spherical cap harmonic analysis
Recently Published Documents


TOTAL DOCUMENTS

46
(FIVE YEARS 10)

H-INDEX

13
(FIVE YEARS 2)

2021 ◽  
Vol 873 (1) ◽  
pp. 012030
Author(s):  
Ilham ◽  
M Syirojudin ◽  
R Margiono ◽  
A Marsono ◽  
N Ardiana

Abstract The earth’s lithospheric magnetic field is part of the main earth’s magnetic field. The lithospheric field has a very small value compared to the Earth’s main magnetic field, approximately less than 1%, and this field is generated at the earth’s crust and upper mantle. Modelling of lithospheric field is useful mainly for predicting the distribution of the value of lithospheric fields and to determine the magnetic anomaly. In this research, modelling the Earth’s lithospheric magnetic field uses Spherical Cap Harmonic Analysis (SCHA) method and this method can do modelling using regional magnetic data. The data used for the modelling are magnetic repeat station data in Indonesia region (BMKG’s Epoch) and SWARM satellite data. The results of the modelling using integrated SWARM satellite and repeat station data produce RMSE values of 64.0834 nT and the expansion of index K is 70. In addition, the results of the modelling resolution is 1.50. The value’s range of modelling’s result are -987.192 – 998.239 nT for X component, -968.189 – 949.438 nT for Y component, -981.266 – 608.676 nT for Z component, and -904.151 – 997.389 nT for total intensity are.


2021 ◽  
Author(s):  
Muhamad Syirojudin ◽  
Eko Haryono ◽  
Suaidi Ahadi

Abstract Indonesia relies only on the limited number of repeat station networks due to the archipelago setting with the extensive sea with the clustery distributed pattern. This paper explored geostatistical modeling to overcome that typical data characteristic. The modeling used repeat station data from the 1985 to 2015 epoch. The research used ordinary kriging (OK) compared to the Spherical Cap Harmonic Analysis (SCHA) and Polynomial. The results show that the root means square error (RMSE) of each declination, inclination, and total intensity vary among epochs. OK method for declination component produces smaller average RMSE (7.67 minutes) than SCHA (9.26 minutes) and Polynomial (7.97minutes). For the inclination component, OK has an average RMSE of 9.55 minutes, smaller than SCHA (10.05) but slightly higher than Polynomial (9.36 minutes). For the total intensity component, OK produce an average RMSE of 63.58 nT, smaller than SCHA (82.24 nT) and Polynomial (68.97 nT). The finding shows that the kriging method can be a promising method to model the regional geomagnetic field, especially in the area of limited available data and clustered distributed data.


2020 ◽  
Vol 12 (23) ◽  
pp. 3851
Author(s):  
Wang Li ◽  
Dongsheng Zhao ◽  
Yi Shen ◽  
Kefei Zhang

The global ionosphere map (GIM) is not capable of serving precise positioning and navigation for single frequency receivers in Australia due to sparse International GNSS Service (IGS) stations located in the vast land. This study proposes an approach to represent Australian total electron content (TEC) using the spherical cap harmonic analysis (SCHA) and artificial neural network (ANN). The new Australian TEC maps are released with an interval of 15 min for longitude and latitude in 0.5° × 0.5°. The validation results show that the Australian Ionospheric Maps (AIMs) well represent the hourly and seasonally ionospheric electrodynamic features over the Australian continent; the accuracy of the AIMs improves remarkably compared to the GIM and the model built only by the SCHA. The residual of the AIM is inversely proportional to the level of solar radiation. During the equinoxes and solstices in a solar minimum year, the residuals are 2.16, 1.57, 1.68, and 1.98 total electron content units (TECUs, 1 TECU = 1016 electron/m2), respectively. Furthermore, the AIM has a strong capability in capturing the adequate electrodynamic evolutions of the traveling ionospheric disturbances under severe geomagnetic storms. The results demonstrate that the ANN-aided SCHA method is an effective approach for mapping and investigating the TEC maps over Australia.


Author(s):  
J. C. K. Akhila ◽  
C. P. Anil Kumar

The interaction of high velocity plasma with Earth’s magnetic field is fundamental and offer many questions on high latitude electrodynamics. The problems associated with influence of electric field and Field Aligned Current (FAC) generation is investigated with the aid of spherical cap harmonic analysis at 830 Mag. Lat. in southern hemispheres. The investigation is done on the cases with different Interplanetary Magnetic Field (IMF) conditions after the earth directed solar events. The helio-plasma parameters viz., density, velocity, energy, electron temperature are also noted during the field aligned current studies. It seems that, due to external magnetic field influence polarization of plasma electric field take place (reorientation of the convective cells). It happens with different orientation as per the magnitude and direction of By and Bz component and the horizontal currents. It is noted that the FAC value also depends on kinetic energy of the plasma streams and conductivity of external loading. As the plasma decelerates by force Jsw X Esw, the resultant current may extend along the field lines. Increases in the FAC density are seemed to be proportional to the transmission function.


Author(s):  
Maha Ali Alfheid ◽  
Mohana Faroug Attia

A spherical cap harmonic analysis (SCHA) model has been used to derive a high resolution regional model of the geomagnetic field in the southwest Pacific region over the past 400 years. Two different methods, a self-consistent and the gufm1 dipole method, have been used to fill in gaps in the available data. The data used in the analysis were largely measurements of the magnetic field recorded in ships logs on voyages of exploration in the region.  The method chosen for the investigation used a spherical cap of radius


2019 ◽  
Vol 122 (2) ◽  
pp. 163-172 ◽  
Author(s):  
E. Nahayo ◽  
P. B. Kotzé ◽  
S. J. Webb

Abstract We apply a Spherical Cap Harmonic Analysis technique on CHAMP satellite data recorded over southern Africa between 2007.0 and 2009.0 epochs, and develop a Southern African Lithospheric Magnetic Model (SALMM) at satellite altitude. The comparative evaluation of the SALMM with the global model MF7 shows a good agreement in the Y and Z field components that are not much contaminated by external field contributions. We use the Z lithospheric field map to confirm the prominent long-wavelength anomalies over the southern African region and its surrounding ocean areas, discussing the underlying geological and tectonic structures of the identified crustal anomalies.


Sign in / Sign up

Export Citation Format

Share Document