scholarly journals Hydrodynamic ram effect driven by a hollow spherical hypervelocity projectile

2021 ◽  
pp. 100269
Author(s):  
Georg Heilig ◽  
Michael May
Keyword(s):  
2019 ◽  
Vol 9 (20) ◽  
pp. 4200 ◽  
Author(s):  
Beilei Zhao ◽  
Jiguang Zhao ◽  
Cunyan Cui ◽  
Yongsheng Duan

To study the hydrodynamic ram effect caused by the debris hypervelocity impact on the satellite tank, a numerical simulation of the spherical debris impacting the satellite tank at the velocity of 7000 m/s was carried out based on ANSYS/LS-DYNA software. The attenuation law of debris velocity, the propagation process of the shock wave and the deformation of the tank walls were investigated. The influences of the liquid-filling ratio, the magnitude, and direction of angular velocity on the hydrodynamic ram effect were analyzed. Results show that the debris velocity decreased rapidly and the residual velocity was 263 m/s when the debris passed through the tank. The shock wave was hemispherical, and the pressure of shock wave was the smallest at the element with an angle of 90° to the impact line. The maximum diameter of the front perforation was larger than that of the back perforation and the bulge height on the front wall was smaller than that on the back wall. With the decrease of the liquid-filling ratio, the diameter of the perforations and bulge height decreased. When the debris impacted the satellite tank with the angular velocity in the x direction, the debris trajectory did not deflect. When the debris impacted the satellite tank with the angular velocities in the y and z direction, the debris trajectory deflected to the negative direction of the z axis and y axis, respectively. The magnitude of the angular velocity affects the residual velocity of debris and the diameter of perforations.


2008 ◽  
Vol 22 (09n11) ◽  
pp. 1525-1530 ◽  
Author(s):  
JONG H. KIM ◽  
SEUNG M. JUN

Airframe survivability and hydrodynamic ram effect of aircraft are investigated. Penetration and internal detonation of a simple tank and ICW(Intermediate Complexity Wing) are simulated by nonlinear explicit calculation. Structural rupture and fluid burst are analytically realized using general coupling of FSI(Fluid-Structure Interaction) and adaptive master-slave contact. Besides, multi-material Eulerian solver and porosity algorithm are employed to model explosive inside fuel and tank bays which are defined in multi-coupling surfaces. Structure and fluid results are animated on the same viewport for enhanced visualization.


2021 ◽  
Author(s):  
An-ran Chen ◽  
Xiang-dong Li ◽  
Lan-wei Zhou ◽  
Yang-zi-yi Ji

2003 ◽  
Vol 48 (3) ◽  
pp. 233-237 ◽  
Author(s):  
H.J.D. Rosa ◽  
C.C. Silva ◽  
M.J. Bryant
Keyword(s):  

Reproduction ◽  
2014 ◽  
Vol 147 (3) ◽  
pp. 357-367 ◽  
Author(s):  
H M Brown ◽  
C Fabre Nys ◽  
J Cognié ◽  
R J Scaramuzzi

Anoestrous ewes can be induced to ovulate by the socio-sexual, ‘ram effect’. However, in some ewes, the induced ovulation is followed by an abnormally short luteal phase causing a so-called ‘short cycle’. The defect responsible for this luteal dysfunction has not been identified. In this study, we investigated ovarian and uterine factors implicated in male-induced short cycles in anoestrous ewes using a combined endocrine and molecular strategy. Before ovulation, we were able to detect a moderate loss of thecal expression of steroid acute regulatory protein (STAR) in ewes that had not received progesterone priming (which prevents short cycles). At and following ovulation, we were able to identify a significant loss of expression of genes coding key proteins involved in the biosynthesis of progesterone (STAR,CYP11A1andHSD3B1(HSD3B)) as well as genes coding proteins critical for vascular development during early luteal development (VEGFAandKDR(VEGFR2)), suggesting dysfunction in at least two pathways critical for normal luteal function. Furthermore, these changes were associated with a significant reduction of progesterone production and luteal weight. Additionally, we cast doubt on the proposed uterus-mediated effect of prostaglandin F2α (PGF2α) as a cause of short cycles by demonstrating the dysregulation of luteal expression of the PGF receptor, which mediates the luteal effects of PGF2α, and by finding no significant changes in the circulating concentrations of PGFM, the principal metabolite of PGF2α in ewes with short cycles. This study is the first of its kind to examine concurrently the endocrine and molecular events in the follicular and early luteal stages of the short cycle.Free French abstractA French translation of this abstract is freely available athttp://www.reproduction-online.org/content/147/3/357/suppl/DC1


2015 ◽  
Vol 75 ◽  
pp. 65-74 ◽  
Author(s):  
Peter J. Disimile ◽  
Norman Toy
Keyword(s):  

2004 ◽  
Vol 44 (1) ◽  
pp. 89-98 ◽  
Author(s):  
Rodolfo Ungerfeld ◽  
Ana L. Dago ◽  
Edgardo Rubianes ◽  
Mats Forsberg

Sign in / Sign up

Export Citation Format

Share Document