scholarly journals Battle Damage Analysis of Aircraft Wing Fuel Tanks by Hydrodynamic Ram Effect

2019 ◽  
Vol 9 (20) ◽  
pp. 4200 ◽  
Author(s):  
Beilei Zhao ◽  
Jiguang Zhao ◽  
Cunyan Cui ◽  
Yongsheng Duan

To study the hydrodynamic ram effect caused by the debris hypervelocity impact on the satellite tank, a numerical simulation of the spherical debris impacting the satellite tank at the velocity of 7000 m/s was carried out based on ANSYS/LS-DYNA software. The attenuation law of debris velocity, the propagation process of the shock wave and the deformation of the tank walls were investigated. The influences of the liquid-filling ratio, the magnitude, and direction of angular velocity on the hydrodynamic ram effect were analyzed. Results show that the debris velocity decreased rapidly and the residual velocity was 263 m/s when the debris passed through the tank. The shock wave was hemispherical, and the pressure of shock wave was the smallest at the element with an angle of 90° to the impact line. The maximum diameter of the front perforation was larger than that of the back perforation and the bulge height on the front wall was smaller than that on the back wall. With the decrease of the liquid-filling ratio, the diameter of the perforations and bulge height decreased. When the debris impacted the satellite tank with the angular velocity in the x direction, the debris trajectory did not deflect. When the debris impacted the satellite tank with the angular velocities in the y and z direction, the debris trajectory deflected to the negative direction of the z axis and y axis, respectively. The magnitude of the angular velocity affects the residual velocity of debris and the diameter of perforations.


AIAA Journal ◽  
2012 ◽  
Vol 50 (7) ◽  
pp. 1621-1630 ◽  
Author(s):  
D. Varas ◽  
J. López-Puente ◽  
R. Zaera

Aerospace ◽  
2021 ◽  
Vol 8 (5) ◽  
pp. 136
Author(s):  
Florian Heilemann ◽  
Alireza Dadashi ◽  
Kai Wicke

In this research article, a novel endoscopic system, which is suited to perform a digital inspection of the aircraft wing fuel tanks, is introduced. The aim of this work is to specifically design and develop an assisting system, called `Eeloscope’, to allow accessing and diving through an aircraft kerosene tank in a minimally invasive matter. Currently, mechanics often suffer from the harsh working environment and the arduous maintenance duties within the tank. To address such challenges and derive a tailored solution, an adapted Design Thinking (DT) process is applied. The resulting system enables a fully digital inspection and generation of 3-dimensional structural inspection data. Consequently, devices such as the Eeloscope will facilitate a more efficient and continuous inspection of fuel tanks to increase the transparency regarding the condition of hardly accessible aircraft structures and provide a work relief for mechanics at the same time.


Author(s):  
I. Ramos ◽  
Y. H. Park ◽  
J. Ulibarri-Sanchez

Composite materials are used in many environments due to their special properties such as high strength-to-weight ratio, corrosion resistance and the ability to be tailored to specific requirements. In particular, the use of fiber reinforced composites (FRCs) for pressure vessels/pipes has increased in structural applications such as fuel tanks, pipes, vessels, and rocket motor cases. Assessing failure conditions is important to ensure that these structures do not fail under their operating condition. In this study, an analytical procedure is developed to predict the fatigue behavior of FRC. A numerical model will also be developed and applied to failure analysis under internal pressure loading.


2008 ◽  
Vol 22 (09n11) ◽  
pp. 1525-1530 ◽  
Author(s):  
JONG H. KIM ◽  
SEUNG M. JUN

Airframe survivability and hydrodynamic ram effect of aircraft are investigated. Penetration and internal detonation of a simple tank and ICW(Intermediate Complexity Wing) are simulated by nonlinear explicit calculation. Structural rupture and fluid burst are analytically realized using general coupling of FSI(Fluid-Structure Interaction) and adaptive master-slave contact. Besides, multi-material Eulerian solver and porosity algorithm are employed to model explosive inside fuel and tank bays which are defined in multi-coupling surfaces. Structure and fluid results are animated on the same viewport for enhanced visualization.


2011 ◽  
Vol 1 (7) ◽  
pp. 89-91
Author(s):  
Mitul Patel ◽  
◽  
Sharvil Shah ◽  
Dharmendra Dubey
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document