scholarly journals Leveraging detrital zircon geochemistry to study deep arc processes: REE-rich magmas mobilized by Jurassic rifting of the Sierra Nevada arc

2021 ◽  
pp. 100010
Author(s):  
Diane Clemens-Knott ◽  
Kathleen DeGraaff Surpless ◽  
Andrew P. Barth ◽  
Joseph L. Wooden
Author(s):  
Todd A. LaMaskin ◽  
Jonathan A. Rivas ◽  
David L. Barbeau ◽  
Joshua J. Schwartz ◽  
John A. Russell ◽  
...  

Differing interpretations of geophysical and geologic data have led to debate regarding continent-scale plate configuration, subduction polarity, and timing of collisional events on the western North American plate margin in pre–mid-Cretaceous time. One set of models involves collision and accretion of far-traveled “exotic” terranes against the continental margin along a west-dipping subduction zone, whereas a second set of models involves long-lived, east-dipping subduction under the continental margin and a fringing or “endemic” origin for many Mesozoic terranes on the western North American plate margin. Here, we present new detrital zircon U-Pb ages from clastic rocks of the Rattlesnake Creek and Western Klamath terranes in the Klamath Mountains of northern California and southern Oregon that provide a test of these contrasting models. Our data show that portions of the Rattlesnake Creek terrane cover sequence (Salt Creek assemblage) are no older than ca. 170–161 Ma (Middle–early Late Jurassic) and contain 62–83% Precambrian detrital zircon grains. Turbidite sandstone samples of the Galice Formation are no older than ca. 158–153 Ma (middle Late Jurassic) and contain 15–55% Precambrian detrital zircon grains. Based on a comparison of our data to published magmatic and detrital ages representing provenance scenarios predicted by the exotic and endemic models (a crucial geologic test), we show that our samples were likely sourced from the previously accreted, older terranes of the Klamath Mountains and Sierra Nevada, as well as active-arc sources, with some degree of contribution from recycled sources in the continental interior. Our observations are inconsistent with paleogeographic reconstructions that are based on exotic, intra-oceanic arcs formed far offshore of North America. In contrast, the incorporation of recycled detritus from older terranes of the Klamath Mountains and Sierra Nevada, as well as North America, into the Rattlesnake Creek and Western Klamath terranes prior to Late Jurassic deformation adds substantial support to endemic models. Our results suggest that during long-lived, east-dipping subduction, the opening and subsequent closing of the marginal Galice/Josephine basin occurred as a result of in situ extension and subsequent contraction. Our results show that tectonic models invoking exotic, intra-oceanic archipelagos composed of Cordilleran arc terranes fail a crucial geologic test of the terranes’ proposed exotic origin and support the occurrence of east-dipping, pre–mid-Cretaceous subduction beneath the North American continental margin.


2016 ◽  
Author(s):  
Joshua R. Hernandez ◽  
◽  
Bethany G. Rysak ◽  
Kathleen DeGraaff Surpless ◽  
Andrew P. Barth ◽  
...  

2017 ◽  
Author(s):  
Kathleen D. Surpless ◽  
◽  
Diane Clemens-Knott ◽  
Andrew Barth ◽  
Michelle L. Gevedon ◽  
...  

Author(s):  
Jared T. Gooley ◽  
Marty Grove ◽  
Stephan A. Graham

ABSTRACT The Mount Diablo region has been located within a hypothesized persistent corridor for clastic sediment delivery to the central California continental margin over the past ~100 m.y. In this paper, we present new detrital zircon U-Pb geochronology and integrate it with previously established geologic and sedimentologic relationships to document how Late Cretaceous through Cenozoic trends in sandstone composition varied through time in response to changing tectonic environments and paleogeography. Petrographic composition and detrital zircon age distributions of Great Valley forearc stratigraphy demonstrate a transition from axial drainage of the Klamath Mountains to a dominantly transverse Sierra Nevada plutonic source throughout Late Cretaceous–early Paleogene time. The abrupt presence of significant pre-Permian and Late Cretaceous–early Paleogene zircon age components suggests an addition of extraregional sediment derived from the Idaho batholith region and Challis volcanic field into the northern forearc basin by early–middle Eocene time as a result of continental extension and unroofing. New data from the Upper Cenozoic strata in the East Bay region show a punctuated voluminous influx (>30%) of middle Eocene–Miocene detrital zircon age populations that corresponds with westward migration and cessation of silicic ignimbrite eruptions in the Nevada caldera belt (ca. 43–40, 26–23 Ma). Delivery of extraregional sediment to central California diminished by early Miocene time as renewed erosion of the Sierra Nevada batholith and recycling of forearc strata were increasingly replaced by middle–late Miocene andesitic arc–derived sediment that was sourced from Ancestral Cascade volcanism (ca. 15–10 Ma) in the northern Sierra Nevada. Conversely, Cenozoic detrital zircon age distributions representative of the Mesozoic Sierra Nevada batholith and radiolarian chert and blueschist-facies lithics reflect sediment eroded from locally exhumed Mesozoic subduction complex and forearc basin strata. Intermingling of eastern- and western-derived provenance sources is consistent with uplift of the Coast Ranges and reversal of sediment transport associated with the late Miocene transpressive deformation along the Hayward and Calaveras faults. These provenance trends demonstrate a reorganization and expansion of the western continental drainage catchment in the California forearc during the late transition to flat-slab subduction of the Farallon plate, subsequent volcanism, and southwestward migration of the paleodrainage divide during slab rollback, and ultimately the cessation of convergent margin tectonics and initiation of the continental transform margin in north-central California.


Sign in / Sign up

Export Citation Format

Share Document