A high speed gaze control system based on the Vestibulo-Ocular Reflex

2005 ◽  
Vol 50 (4) ◽  
pp. 147-161 ◽  
Author(s):  
Stéphane Viollet ◽  
Nicolas Franceschini
2011 ◽  
Vol 29 (2) ◽  
pp. 201-211 ◽  
Author(s):  
Kohei Okumura ◽  
Hiromasa Oku ◽  
Masatoshi Ishikawa

2005 ◽  
Vol 15 (5-6) ◽  
pp. 279-289
Author(s):  
A.P. Mulavara ◽  
J. Houser ◽  
C. Miller ◽  
J.J. Bloomberg

We have previously shown that multiple, interdependent, full- body sensorimotor subsystems aid gaze stabilization during locomotion. In the present study we investigated how the full-body gaze control system responds following exposure to visual-vestibular conflict known to adaptively modify vestibulo-ocular reflex (VOR) function. Subjects (n = 14) walked (6.4 km/h) on a motorized treadmill before and after they were exposed to 0.5X minifying lenses worn for 30 minutes during self-generated sinusoidal vertical head rotations performed while seated. Results indicate that, following the exposure the major changes that subjects showed were to: 1) decrease the amplitude of head pitch and vertical translation of the torso movement with respect to space; 2) increase the amount of knee and ankle flexion during the initial stance phase of the gait cycle. A correlation analysis showed that: 1) changes in the head pitch significantly co-varied with that of the vertical torso translation 2) changes in the knee flexion significantly co-varied with that of the ankle flexion during the initial stance phase of the gait cycle 3) changes in the vertical torso translation significantly co-varied with that of the ankle flexion during the initial stance phase of the gait cycle. Thus we infer that the changes in the magnitude after VOR adaptation in comparison to their pre adaptation responses serve to aid gaze stabilization during locomotion. The significant covariation of the changes between subsystems provides further evidence that the full body contributes to gaze stabilization during locomotion, and its different functional elements are subject to adaptive reorganization following exposure to visual-vestibular conflict.


2012 ◽  
Vol 132 (3) ◽  
pp. 347-356 ◽  
Author(s):  
Yuta Nabata ◽  
Tatsuya Nakazaki ◽  
Tokoku Ogata ◽  
Kiyoshi Ohishi ◽  
Toshimasa Miyazaki ◽  
...  

2015 ◽  
Vol 46 (3) ◽  
pp. 259-287
Author(s):  
Viktor Andreevich Anikin ◽  
Oleg Vladimirovich Animitsa ◽  
Vladimir Mikhailovich Kuvshinov ◽  
Veniamin Aleksandrovich Leontiev
Keyword(s):  

2020 ◽  
Vol 38 (8A) ◽  
pp. 1187-1199
Author(s):  
Qaed M. Ali ◽  
Mohammed M. Ezzalden

BLDC motors are characterized by electronic commutation, which is performed by using an electric three-phase inverter. The direct control system of the BLDC motor consists of double loops; including the inner-loop for current regulating and outer-loop for speed control. The operation of the current controller requires feedback of motor currents; the conventional current controller uses two current sensors on the ac side of the inverter to measure the currents of two phases, while the third current would be accordingly calculated. These two sensors should have the same characteristics, to achieve balanced current measurements. It should be noted that the sensitivity of these sensors changes with time. In the case of one sensor fails, both of them must be replaced. To overcome this problem, it is preferable to use one sensor instead of two. The proposed control system is based on a deadbeat predictive controller, which is used to regulate the DC current of the BLDC motor. Such a controller can be considered as digital controller mode, which has fast response, high precision and can be easily implemented with microprocessor. The proposed control system has been simulated using Matlab software, and the system is tested at a different operating condition such as low speed and high speed.


Sign in / Sign up

Export Citation Format

Share Document