Monitoring land cover change in urban and peri-urban areas using dense time stacks of Landsat satellite data and a data mining approach

2012 ◽  
Vol 124 ◽  
pp. 689-704 ◽  
Author(s):  
Annemarie Schneider
2018 ◽  
Vol 6 (2) ◽  
pp. 406
Author(s):  
Younes Oubrahim ◽  
Sara Lbazri ◽  
Soumaya Ounacer ◽  
Amina Rachik ◽  
Reda Moulouki ◽  
...  

2013 ◽  
Vol 8 (1) ◽  
pp. 084596 ◽  
Author(s):  
Zhongchang Sun ◽  
Xinwu Li ◽  
Wenxue Fu ◽  
Yingkui Li ◽  
Dongsheng Tang

2011 ◽  
Vol 15 (9) ◽  
pp. 1-26 ◽  
Author(s):  
Emmanuel M. Attua ◽  
Joshua B. Fisher

Abstract Urban land-cover change is increasing dramatically in most developing nations. In Africa and in the New Juaben municipality of Ghana in particular, political stability and active socioeconomic progress has pushed the urban frontier into the countryside at the expense of the natural ecosystems at ever-increasing rates. Using Landsat satellite imagery from 1985 to 2003, the study found that the urban core expanded by 10% and the peri-urban areas expanded by 25% over the period. Projecting forward to 2015, it is expected that urban infrastructure will constitute 70% of the total land area in the municipality. Giving way to urban expansion were losses in open woodlands (19%), tree fallow (9%), croplands (4%), and grass fallow (3%), with further declines expected for 2015. Major drivers of land-cover changes are attributed to demographic changes and past microeconomic policies, particularly the Structural Adjustment Programme (SAP); the Economic Recovery Programme (ERP); and, more recently, the Ghana Poverty Reduction Strategy (GPRS). Pluralistic land administration, complications in the land tenure systems, institutional inefficiencies, and lack of capacity in land administration were also key drivers of land-cover changes in the New Juaben municipality. Policy recommendations are presented to address the associated challenges.


Author(s):  
Ibrar ul Hassan Akhtar ◽  
Athar Hussain ◽  
Kashif Javed ◽  
Hammad Ghazanfar

Developing countries like Pakistan is among those where lack of adoption to science and technology advancement is a major constraint for Satellite Remote Sensing use in crops and land use land cover digital information generation. Exponential rise in country population, increased food demand, limiting natural resources coupled with migration of rural community to urban areas had further led to skewed official statistics. This study is an attempt to demonstrate the possible use of freely available satellite data like Landsat8 under complex cropping system of Okara district of Punjab, Pakistan. An Integrated approach has been developed for the satellite data based crops and land use/cover spatial area estimation. The resultant quality was found above 96% with Kappa statistics of 0.95. Land utilization statistics provided detail information about cropping patterns as well as land use land cover status. Rice was recorded as most dominating crop in term of cultivation area of around 0.165 million ha followed by autumn maize 0.074 million ha, Fallow crop fields 0.067 million ha and Sorghum 0.047 million ha. Other minor crops observed were potato, fodder and cotton being cultivated on less than 0.010 million ha. Population settlements were observed over an area of around 0.081 million ha of land. 


Author(s):  
E. Ramadan ◽  
T. Al-Awadhi ◽  
Y. Charabi

The study of land cover/land use dynamics under climate change conditions is of great significance for improving sustainable ecological management. Understanding the relationships between land cover and land use changes and climate change is thus very important. Understanding the interactive and cumulative effects of climate and land-use changes are a priority for urban planners and policy makers. The present investigation is based on Landsat satellite imagery to explore changes in vegetation spatial distribution between the years from 2000 to2018 The methodology is focused on vegetation indexes tracking and algebraic overlay calculation to analyzed vegetation and their spatial differentiation, land cover change pattern, and the relationships between vegetation dynamics and land cover change in Dhofar Governorate. The study results have revealed that the vegetation vigor is lower in all years compared to 2000. The scene of 2010 shows the minimum vegetation vigor, overall. Besides, the investigation shows a statistical relationship between rainfall and the status of the health of vegetation. Monsoon rainfall has an impact of the growth of vegetation. Between 2012 and 2013, the vegetation activity shows a decreasing trend. The analysis diagnoses an area affected by the worst degree of aridity situated in the southeastern of Dhofar Mountains. Climate change is the main driving factor resulted from both human activities and rainfall fluctuation.


Sign in / Sign up

Export Citation Format

Share Document