Assessment of adsorber bed designs in waste-heat driven adsorption cooling systems for vehicle air conditioning and refrigeration

2014 ◽  
Vol 30 ◽  
pp. 440-451 ◽  
Author(s):  
Amir Sharafian ◽  
Majid Bahrami
Energies ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2574 ◽  
Author(s):  
Ramadas Narayanan ◽  
Edward Halawa ◽  
Sanjeev Jain

Air conditioning accounts for up to 50% of energy use in buildings. Increased air-conditioning-system installations not only increase total energy consumption but also raise peak load demand. Desiccant evaporative cooling systems use low-grade thermal energy, such as solar energy and waste heat, instead of electricity to provide thermal comfort. This system can potentially lead to significant energy saving, reduction in carbon emissions, and it has a low dew-point operation and large capacity range. Their light weight, simplicity of design, and close-to-atmospheric operation make them easy to maintain. This paper evaluates the applicability of this technology to the climatic conditions of Brisbane, Queensland, Australia, specifically for the residential sector. Given the subtropical climate of Brisbane, where humidity levels are not excessively high during cooling periods, the numerical study shows that such a system can be a potential alternative to conventional compression-based air-conditioning systems. Nevertheless, the installation of such a system in Brisbane’s climate zone requires careful design, proper selection of components, and a cheap heat source for regeneration. The paper also discusses the economy-cycle options for this system in such a climate and compares its effectiveness to natural ventilation.


Author(s):  
Anurag Maheswari ◽  
◽  
Manoj Kumar Singh ◽  
Yogesh K. Prajapati ◽  
Niraj Kumar ◽  
...  

Vapor compression refrigeration system (VCRS) based conventional cooling systems run on the high amount of electricity and refrigerants responsible for greenhouse emissions. To save the environment and high-grade energy, traditional cooling systems should be replaced with some environment-friendly alternative. This paper proposed alternative eco-friendly air-conditioning systems based on an amalgam of two different technologies, i.e., desiccant dehumidification and thermoelectric (TE) cooling. The proposed air-conditioning system has the following subprocess: dehumidification of moist air by the solid desiccant wheel, cooling of processed air by TE modules, and regeneration of desiccant wheel by an electric heater and waste heat from TE modules. The air conditioning system has been experimentally studied for cooling performance, cooling effect, and energy input. The maximum coefficient of performance of 0.865 can be achieved with the proposed system, and it can be used for cooling effects up to 1442.24 W to maintain the human comfort condition in the chamber i.e. approximately 22 ℃ and RH 50% defined by ASHRAE.


2007 ◽  
Vol 2 (3) ◽  
pp. 86-95
Author(s):  
R. Sudhakaran ◽  
◽  
V. Sella Durai ◽  
T. Kannan ◽  
P.S. Sivasakthievel ◽  
...  

Solar Energy ◽  
2005 ◽  
Author(s):  
M. O. Abdullah ◽  
S. L. Leo

An adsorption system driven by solar heat or waste heat can help to eliminate the use of ozone depletion substances, such as chlorofluorocarbons (CFCs) and hydro-chlorofluorocarbons (HCFCs). In recent years, adsorption system has witnessed an increasing interest in many fields due to the fact that this system is quiet, long lasting, cheap to maintain and environmentally benign. Although adsorption system is not commonly used for automobile air conditioning, adsorption-cooled mini-refrigerators have been marketed for recreational transports (motor homes, boats, etc). Hence, there exists a need for a creative design and innovation to allow adsorption technology to be practical for air conditioning in automobile. The objective of this paper is to present a comprehensive review on the past efforts in the field of solar adsorption refrigeration systems and also the feasibility study of this technology for automobile airconditioning purpose. It is a particularly an attractive application for solar energy because of the near coincidence of peak cooling loads with the available of solar power.


Adsorption ◽  
2004 ◽  
Vol 10 (1) ◽  
pp. 57-68 ◽  
Author(s):  
Y.Z. Lu ◽  
R.Z. Wang ◽  
S. Jianzhou ◽  
M. Zhang ◽  
Y.X. Xu ◽  
...  

Author(s):  
Raman Kumar Singh ◽  
Saif Nawaz Ahmad ◽  
Neeraj Priyadarshi ◽  
Md Obaidur Rahman ◽  
A K Bhoi

2012 ◽  
Vol 608-609 ◽  
pp. 1241-1245
Author(s):  
Wei Qiu ◽  
Li Zhang ◽  
Qing Rong liu

This paper analyses the energy consumption of water source heat pump, shows that the performance coefficient of water source heat pump unit is directly related to the temperature of water resources, and discusses the feasibility of central heating by recovering condensing heat of power plant using water source heat pump unit. It analyzes the energy saving benefit of water source heat pump unit is significant compared with traditional heating. Using the technology recovers waste heat of power plant, which can not only decrease the energy waste on the direct discharge of waste heat and water, but at the same time, it is a new air conditioning system without environmental pollution.


1971 ◽  
Vol 93 (2) ◽  
pp. 172-176
Author(s):  
M. E. Lackey

The thermal energy requirements for air conditioning by compressive and absorption methods were determined for light-water, thermal-breeder, and fast-breeder reactors. The energy required to produce a ton-hour of refrigeration varied from 5100 Btu to 13,100 Btu by absorption and from 5600 to 8800 Btu by compression. The amount of waste heat dissipated to the environment at the reactor site as a consequence of producing a ton-hour of air conditioning ranged from an increase of 21,000 Btu for the electric-motor-driven refrigeration system to a decrease of 6000 Btu for the absorption refrigeration system.


Sign in / Sign up

Export Citation Format

Share Document