scholarly journals Performance Characteristics of Solid-Desiccant Evaporative Cooling Systems

Energies ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2574 ◽  
Author(s):  
Ramadas Narayanan ◽  
Edward Halawa ◽  
Sanjeev Jain

Air conditioning accounts for up to 50% of energy use in buildings. Increased air-conditioning-system installations not only increase total energy consumption but also raise peak load demand. Desiccant evaporative cooling systems use low-grade thermal energy, such as solar energy and waste heat, instead of electricity to provide thermal comfort. This system can potentially lead to significant energy saving, reduction in carbon emissions, and it has a low dew-point operation and large capacity range. Their light weight, simplicity of design, and close-to-atmospheric operation make them easy to maintain. This paper evaluates the applicability of this technology to the climatic conditions of Brisbane, Queensland, Australia, specifically for the residential sector. Given the subtropical climate of Brisbane, where humidity levels are not excessively high during cooling periods, the numerical study shows that such a system can be a potential alternative to conventional compression-based air-conditioning systems. Nevertheless, the installation of such a system in Brisbane’s climate zone requires careful design, proper selection of components, and a cheap heat source for regeneration. The paper also discusses the economy-cycle options for this system in such a climate and compares its effectiveness to natural ventilation.

Author(s):  
Wendell Concina ◽  
Suresh Sadineni ◽  
Robert Boehm

Evaporative cooling is among the most cost effective methods of air conditioning, but is less efficient in humid climates. An evaporative system coupled with a desiccant wheel can operate effectively in broader climatic conditions. These cooling systems can substitute traditional vapor compression air conditioning systems as they involve environmentally friendly cooling processes with reduced electricity demand (which is commonly generated from fossil fuels) along with no harmful CFC based refrigerant usage. Furthermore, direct utilization of low grade energy sources such as solar thermal energy or flue gas heat can drive the desiccant regeneration process, thus providing economic benefits. This study presents the results of simulations of desiccant cooling system performance for different climate zones of the United States. Solar assisted desiccant air conditioning is particularly useful where there are abundant solar resources with high temperature and humidity levels. Building energy simulations determined cooling energy requirements for the building. Simulation of an evacuated solar hot water collector model provided the heat energy available for regeneration of the desiccant. Solid desiccant of common material such as silica gel used in a rotary wheel is simulated using established validated computer models; this is coupled with evaporative cooling. Transients of the overall system for different cooling loads and solar radiation levels are presented. Finally, feasibility studies of the desiccant cooling systems are presented in comparison with traditional cooling system. Further analysis of the data presents optimization opportunities. Energy savings were achieved in all climatic conditions with decreased effectiveness in more humid conditions.


2021 ◽  
Vol 13 (5) ◽  
pp. 2836
Author(s):  
Khawar Shahzad ◽  
Muhammad Sultan ◽  
Muhammad Bilal ◽  
Hadeed Ashraf ◽  
Muhammad Farooq ◽  
...  

Poultry are one of the most vulnerable species of its kind once the temperature-humidity nexus is explored. This is so because the broilers lack sweat glands as compared to humans and undergo panting process to mitigate their latent heat (moisture produced in the body) in the air. As a result, moisture production inside poultry house needs to be maintained to avoid any serious health and welfare complications. Several strategies such as compressor-based air-conditioning systems have been implemented worldwide to attenuate the heat stress in poultry, but these are not economical. Therefore, this study focuses on the development of low-cost and environmentally friendly improved evaporative cooling systems (DEC, IEC, MEC) from the viewpoint of heat stress in poultry houses. Thermodynamic analysis of these systems was carried out for the climatic conditions of Multan, Pakistan. The results appreciably controlled the environmental conditions which showed that for the months of April, May, and June, the decrease in temperature by direct evaporative cooling (DEC), indirect evaporative cooling (IEC), and Maisotsenko-Cycle evaporative cooling (MEC) systems is 7–10 °C, 5–6.5 °C, and 9.5–12 °C, respectively. In case of July, August, and September, the decrease in temperature by DEC, IEC, and MEC systems is 5.5–7 °C, 3.5–4.5 °C, and 7–7.5 °C, respectively. In addition, drop in temperature-humidity index (THI) values by DEC, IEC, and MEC is 3.5–9 °C, 3–7 °C, and 5.5–10 °C, respectively for all months. Optimum temperature and relative humidity conditions are determined for poultry birds and thereby, systems’ performance is thermodynamically evaluated for poultry farms from the viewpoint of THI, temperature-humidity-velocity index (THVI), and thermal exposure time (ET). From the analysis, it is concluded that MEC system performed relatively better than others due to its ability of dew-point cooling and achieved THI threshold limit with reasonable temperature and humidity indexes.


Author(s):  
N.N. Novikov ◽  

A method for calculating the parameters of the microclimate in a livestock building using water-evaporative air conditioning is described. It makes it possible to choose a rational temperature and humidity conditions for a room in hot weather, calculate the required air exchange, water evaporation rate and select the appropriate equipment.


Author(s):  
Hany A. Al-Ansary

Cooling turbine inlet air is a proven method of increasing turbine power output, especially during peak summer demand. It is estimated that turbine power output can increase by as much as 0.7% for every 1°C drop in inlet air temperature. Two inlet air cooling systems are widely used: evaporative cooling systems and chiller systems. Evaporative cooling is economical and uncomplicated, but its efficiency can significantly drop if the relative humidity is high. There is also a potential for excessive wear of compressor blades if water droplets are carried into the compressor section. On the other hand, chiller systems have the advantage of being independent of humidity and do not have the potential to cause damage to compressor blades. However, chiller systems consume power and cause a larger pressure drop than evaporative coolers. In this work, the possibility of using an ejector refrigeration system to cool turbine inlet air is explored. These systems are low-maintenance, fluid-driven, heat-operated devices that can use part of the turbine exhaust flow as the heat source for running the cycle. These systems require only pump power to feed liquid refrigerant to the vapor generator, making the power consumption potentially lower than conventional chiller systems. Using thermodynamic analysis, this paper compares the performance of ejector refrigeration systems with that of chiller systems based primarily on their power consumption. Performance characteristics for the ejector system are obtained through a CFD model that uses a real-gas model for R-134a. Published data on the performance of a commercial gas turbine is also considered. The power consumption of ejector refrigeration systems is found to be significantly smaller than that of vapor compression systems, with savings ranging from 19% to 80%. Power consumption is also found to be small compared to the boost in turbine power that is obtained. The percentage of waste heat needed to operate the ejector refrigeration system is found to be generally less than 25%.


Energies ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 522
Author(s):  
Su Liu ◽  
Jae-Weon Jeong

This study investigated the annual energy saving potential and system performance of two different evaporative cooling-based liquid desiccant and evaporative cooling-assisted air conditioning systems. One system used an indirect and direct evaporative cooler with a two-stage package to match the target supply air point. The other was equipped with a single-stage, packaged dew-point evaporative cooler that used a portion of the process air, which had been dehumidified in advance. Systems installed with the two evaporative coolers were compared to determine which one was more energy efficient and which one could provide better thermal comfort for building occupants in a given climate zone, using detailed simulation data. The detailed energy consumption data of these two systems were estimated using an engineering equation solver with each component model. The results showed that the liquid desiccant and dew-point evaporative-cooler-assisted 100% outdoor air system (LDEOAS) resulted in approximately 34% more annual primary energy consumption than that of the liquid desiccant and the indirect and direct evaporative-cooler-assisted 100% outdoor air system (LDIDECOAS). However, the LDEOAS could provide drier and cooler supply air, compared with the LDIDECOAS. In conclusion, LDIDECOAS has a higher energy saving potential than LDEOAS, with an acceptable level of thermal comfort.


2014 ◽  
Vol 1070-1072 ◽  
pp. 1679-1683
Author(s):  
Qin Ouyang ◽  
Guang Xiao Kou ◽  
Min Ouyang

According to the climate conditions of Hunan province and the design parameters related to air conditioning, the energy consumption and the related characteristics of the liquid desiccant evaporative cooling system (LDECS) are compared with primary return air conditioning system. The results show that energy consumption of LDECS can be decreased by 11.78% compared to the primary return air system. LDECS has a certain degree of energy saving potential in Hunan province, especially when waste heat is available.


Author(s):  
Alexander S. Rattner ◽  
Srinivas Garimella

Approximately two-thirds of all input energy used for power and electricity generation in the USA is lost as heat during conversion processes. Additionally, 12.5% of primary fuel and 20.3% of the electricity generated through these processes are employed for space heating, water heating, and refrigeration where low-grade heat could suffice. The potential for harnessing waste heat from power generation and thermal processes to perform these low-grade tasks is assessed here. By matching power plant outlet streams with applications at corresponding temperature ranges, this study identifies sufficient waste heat to satisfy all residential, building, and manufacturing space and water heating needs. Sufficient high temperature exhaust from power plants is identified to satisfy 27% of residential air conditioning demand with thermally activated refrigeration or all industrial low temperature (100–150°C) process heating and refrigeration needs. Exhaust from vehicle engines is sufficient to satisfy all in-vehicle air conditioning and 68% of electricity generation demand. Energy usage and waste heat availability and application information collected for this study is compiled in a thermodynamically informed database. By providing SQL queries, this database can answer detailed questions about energy sources and demands delineated by temperature, energy scale, process, and location. This capability can inform future infrastructure and development to effectively capture waste heat that would be lost today, substantially reducing the USA national energy intensity across all end uses.


Author(s):  
Esmaiil Ghasemisahebi ◽  
Soheil Soleimanikutanaei ◽  
Cheng-Xian Lin ◽  
Dexin Wang

In this study tube bundle Transport Membrane Condenser (TMC) has been studied numerically. The tube walls of TMC based heat exchangers are made of a nano-porous material and has a high membrane selectivity which is able to extract condensate pure water from the flue gas in the presence of other non-condensable gases (i.e. CO2, O2 and N2). Low grade waste heat and water recovery using ceramic membrane, based on separation mechanism, is a promising technology which helps to increase the efficiency of boilers and gas or coal combustors. The effects of inclination angles of tube bundle, different flue gas velocities, and the mass flow rate of water and gas flue have been studied numerically on heat transfer, pressure drop and condensation rates. To assess the capability of single stage TMC heat exchangers in terms of waste heat and water recovery at various inlet conditions, a single phase multi-component model is used. ANSYS-FLUENT is used to simulate the heat and mass transfer inside TMC heat exchangers. The condensation model and related source/sink terms are implemented in the computational setups using appropriate User Defined Functions (UDFs).


2017 ◽  
Vol 14 (2) ◽  
pp. 137
Author(s):  
Nasser Al-Azri ◽  
Y. Zurigat ◽  
N. Al-Rawahi

Bioclimatic charts are used by engineers and architects in implementing passive cooling systems and architectural optimization with respect to natural air conditioning. Conventionally, the development of these charts is based on the availability of typical meteorological year which requires a record of meteorological data that are rarely available in sufficient amounts. Bioclimatic charts in Oman were developed earlier by the authors for limited locations based on the available typical meteorological years. Using dry bulb and dew point temperatures only, bioclimatic charts are developed for Adam, Buraimi, Ibra, Muscat, Nizwa, Rustaq, Saiq, Salalah, Suhar and Sur. These charts are better representative of bioclimatic trends since their development is mainly based on the relevant parameters, namely dry bulb temperature and dew point.


Sign in / Sign up

Export Citation Format

Share Document