The effect of building envelope on the thermal comfort and energy saving for high-rise buildings in hot–humid climate

2016 ◽  
Vol 53 ◽  
pp. 1508-1519 ◽  
Author(s):  
Seyedehzahra Mirrahimi ◽  
Mohd Farid Mohamed ◽  
Lim Chin Haw ◽  
Nik Lukman Nik Ibrahim ◽  
Wardah Fatimah Mohammad Yusoff ◽  
...  
2021 ◽  
Vol 29 (2) ◽  
Author(s):  
Maryam Qays Oleiwi ◽  
Mohd Farid Mohamed

Past years have witnessed the popularity of traditional Malay house as a common housing type in Malaysia. However, double-storey house has become one of the common types of low-rise housing in Malaysia. Several passive cooling strategies have been adopted to cope with the hot-humid climate of Malaysia. In this study, the thermal comfort of a double-storey house was examined when different passive cooling strategies that were adopted from traditional Malay houses were applied using IES-VE 2019 building simulation software. The simulation was conducted for various design strategies such as changing concrete roof tiles to clay roof tiles, adding two small openings to the attic, removing the ceiling between the upper floor and the attic, and extending the overhang by 50% of its length for all the four facades. All these strategies were tested and compared between full-day natural ventilation and without any ventilation. The thermal comfort of these strategies was graphically defined based on the operative temperature. These analyses revealed that protecting the building envelope by extending the overhang by 50% of its length for all the four facades could ensure the best thermal comfort is achieved compared to other selected strategies. Recommendations for further studies are also outlined in this paper.


Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6597
Author(s):  
Ahmet Bircan Atmaca ◽  
Gülay Zorer Gedik ◽  
Andreas Wagner

Mosques are quite different from other building types in terms of occupant type and usage schedule. For this reason, they should be evaluated differently from other building types in terms of thermal comfort and energy consumption. It is difficult and probably not even necessary to create homogeneous thermal comfort in mosques’ entire usage area, which has large volumes and various areas for different activities. Nevertheless, energy consumption should be at a minimum level. In order to ensure that mosques are minimally affected by outdoor climatic changes, the improvement of the properties of the building envelope should have the highest priority. These optimal properties of the building envelope have to be in line with thermal comfort in mosques. The proposed method will be a guide for designers and occupants in the design process of new mosques or the use of existing mosques. The effect of the thermal properties of the building envelope on energy consumption was investigated to ensure optimum energy consumption together with an acceptable thermal comfort level. For this purpose, a parametric simulation study of the mosques was conducted by varying optical and thermal properties of the building envelope for a temperature humid climate zone. The simulation results were analyzed and evaluated according to current standards, and an appropriate envelope was determined. The results show that thermal insulation improvements in the roof dome of buildings with a large volume contributed more to energy savings than in walls and foundations. The use of double or triple glazing in transparent areas is an issue that should be considered together with the solar energy gain factor. Additionally, an increasing thickness of thermal insulation in the building envelope contributed positively to energy savings. However, the energy savings rate decreased after a certain thickness. The proposed building envelope achieved a 33% energy savings compared to the base scenario.


Author(s):  
Stanley Russell ◽  
Mark Weston ◽  
Yogi Goswami ◽  
Matthew Doll

Flex House is a flexible, modular, pre-fabricated zero energy building that can be mass produced and adapted easily to a variety of site conditions and plan configurations. The key factor shaping the design is central Florida’s hot humid climate and intense solar radiation. Flex house combines the wisdom of vernacular Florida houses with state of the art Zero Energy House technologies (ZEH.) A combined system of photovoltaic panels and solar thermal concentrating panels take advantage of the region’s abundant insolation in providing clean renewable energy for the house. Conservation is achieved with state of the art mechanical systems and innovative liquid desiccant dehumidification technology along with highly efficient lighting and appliances. The hybrid nature of the Flex house allows for both an open and closed system to take advantage of the seasonal temperature variation. Central Florida buildings can conserve energy by allowing natural ventilation to take advantage of passive cooling in the mild months of the year and use a closed system to utilize mechanical cooling when temperatures are too high for passive cooling strategies. The building envelope works equally well throughout the year combining an optimum level of insulation, resistance to air infiltration, transparency for daylight, and flexibility that allows for opening and closing of the house. Flex House is designed with a strong connection between interior spaces and the outdoors with carefully placed fenestration and a movable wall system which enables the house to transform in response to the temperature variations throughout the year. The house also addresses the massive heat gain that occurs through the roof, which can generate temperatures in excess of 140 degrees. Flex House incorporates a parasol-like outer structure that shades the roof, walls and courtyard minimizing heat gain through the building envelope. To be implemented on a large scale, ZEH must be affordable for people earning a moderate income. Site built construction is time consuming and wasteful and results in higher costs. Building homes in a controlled environment can reduce material waste, and construction costs while increasing efficiency. Pre-fabricating Flex House minimizes preparation time, waste and safety concerns and maximizes economy, quality control, efficiency and safety during the construction process. This paper is an account of the design and construction of Flex House, a ZEH for central Florida’s hot humid climate.


Sign in / Sign up

Export Citation Format

Share Document