Laser induced breakdown optical emission spectroscopic study of silicon plasma

Author(s):  
Ghulam Murtaza ◽  
Nek Muhammad Shaikh ◽  
Ghulam Abbas Kandhro ◽  
Muhammad Ashraf
Minerals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 705
Author(s):  
Peter A. Defnet ◽  
Michael A. Wise ◽  
Russell S. Harmon ◽  
Richard R. Hark ◽  
Keith Hilferding

Laser-induced breakdown spectroscopy (LIBS) is a simple and straightforward technique of atomic emission spectroscopy that can provide multi-element detection and quantification in any material, in-situ and in real time because all elements emit in the 200–900 nm spectral range of the LIBS optical emission. This study evaluated two practical applications of LIBS—validation of labels assigned to garnets in museum collections and discrimination of LCT (lithium-cesium-tantalum) and NYF (niobium, yttrium and fluorine) pegmatites based on garnet geochemical fingerprinting, both of which could be implemented on site in a museum or field setting with a handheld LIBS analyzer. Major element compositions were determined using electron microprobe analysis for a suite of 208 garnets from 24 countries to determine garnet type. Both commercial laboratory and handheld analyzers were then used to acquire LIBS broadband spectra that were chemometrically processed by partial least squares discriminant analysis (PLSDA) and linear support vector machine classification (SVM). High attribution success rates (>98%) were obtained using PLSDA and SVM for the handheld data suggesting that LIBS could be used in a museum setting to assign garnet type quickly and accurately. LIBS also identifies changes in garnet composition associated with increasing mineral and chemical complexity of LCT and NYF pegmatites.


Metals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 736
Author(s):  
Peter Seidel ◽  
Doreen Ebert ◽  
Robert Schinke ◽  
Robert Möckel ◽  
Simone Raatz ◽  
...  

Better quality control for alloy manufacturing and sorting of post-consumer scraps relies heavily on the accurate determination of their chemical composition. In recent decades, analytical techniques, such as X-ray fluorescence spectroscopy (XRF), laser-induced breakdown spectroscopy (LIBS), and spark optical emission spectroscopy (spark-OES), found widespread use in the metal industry, though only a few studies were published about the comparison of these techniques for commercially available alloys. Hence, we conducted a study on the evaluation of four analytical techniques (energy-dispersive XRF, wavelength-dispersive XRF, LIBS, and spark-OES) for the determination of metal sample composition. It focuses on the quantitative analysis of nine commercial alloys, representing the three most important alloy classes: copper, aluminum, and steel. First, spark-OES is proven to serve as a validation technique in the use of certified alloy reference samples. Following an examination of the lateral homogeneity by XRF, the results of the techniques are compared, and reasons for deviations are discussed. Finally, a more general evaluation of each technique with its capabilities and limitations is given, taking operation-relevant parameters, such as measurement speed and calibration effort, into account. This study shall serve as a guide for the routine use of these methods in metal producing and recycling industries.


2017 ◽  
Vol 32 (2) ◽  
pp. 367-372 ◽  
Author(s):  
Jin Guo ◽  
Junfeng Shao ◽  
Tingfeng Wang ◽  
Changbin Zheng ◽  
Anmin Chen ◽  
...  

The spatial confinement effect in laser-induced plasma with different distances between the target surface and focal point is investigated by optical emission spectroscopy.


1998 ◽  
Vol 526 ◽  
Author(s):  
Y. F. Lu ◽  
Z. B. Tao ◽  
M. H. Hong ◽  
D.S.H. Chan ◽  
T.S. Low

AbstractOptical emission spectrum of aluminum plasma induced by a 1064 nm Nd:YAG laser is investigated by an Optical Multichannel Analyzer (OMA). Spectroscopic study shows that more number of Al, Al+, and Al++ spectral lines can be observed with increasing the incident laser fluence. Al, Al+, Al++ spectral lines are also observed successively with high fluence. The atomic spontaneous radiation is analyzed to interpret the calibrated plasma spectrum. The laser energy threshold for the appearance of excited Al, Al+, and Al++ spectral lines are about 0.8, 1.0 and 1.5 J/cm2 respectively. Assuming LTE (Local Thermodynamic Equilibrium) conditions, the plasma density is derived to be in the range of 0.7×1017 to 2×1017 cm-3 from the profiles of Al+ (358.7 and 286.1 nm) spectral lines with different gated times and incident laser fluences. The plasma temperature is also estimated to be 4000 ~ 8000 K, from relative intensities of two different Al I spectral lines (309.2 and 396.2 nm) with different fluence.


2013 ◽  
Vol 39 (12) ◽  
pp. 1115-1121
Author(s):  
M. Hanif ◽  
M. Salik ◽  
M. A. Baig

Sign in / Sign up

Export Citation Format

Share Document