A comparative study of ATR-FTIR, UV–visible and fluorescence spectroscopy combined with chemometrics for quantification of squalene in extra virgin olive oils

Author(s):  
İsmail Tarhan
2021 ◽  
Author(s):  
Hicham Zaroual ◽  
El Mestafa El Hadrami ◽  
Romdhane Karoui

This study examines the feasibility of using front face fluorescence spectroscopy (FFFS) to authenticate 41 virgin olive oil (VOO) samples collected from 5 regions in Morocco during 2 consecutive crop seasons.


2020 ◽  
Vol 2020 ◽  
pp. 1-9 ◽  
Author(s):  
Aimen El Orche ◽  
Mustapha Bouatia ◽  
Siham Yanisse ◽  
Houda Labjar ◽  
Mouad Mouhsin ◽  
...  

One of the most important challenges in the authentication of olive oil is the determination of the geographical origin of virgin olive oil. In this work, we evaluated the capacity of two spectroscopic techniques, UV-Visible and ATR-FTMIR, coupled with chemometric tools to determine the geographical origin of olive oils. These analytical approaches have been applied to samples that have been collected during the period of olive oil production, in the Moroccan region of Beni Mellal-Khenifra. To develop a rapid analysis tool capable of authenticating the geographical origin of virgin olive oils from five geographical areas of the Moroccan region of Beni Mellal-Khenifra, UV-Visible and ATR-FTMIR spectral data were processed by chemometric algorithms. PCA was applied on the spectral data set to represent the data in a very small space, and then discrimination methods were applied on the principal components synthesized by the PCA. The application of the PCA-LDA method on the spectral data of UV-Visible and ATR-FTMIR shows a good ability to classify olive oils according to their geographical origin with a percentage of correct classification that represents 90.24% and 85.87%, respectively, and the processing of the spectral data of UV-Visible and ATR-FTMIR by PCA-SVM allows differentiating correctly between five olive oils with a correct classification rate of 100% and 97.56, respectively. This study demonstrated the feasibility of UV-Visible and ATR-FTMIR fingerprinting (routine technique) for the geographical classification of olive oils in the Moroccan region of Beni Mellal-Khenifra. Such developed methods can be proposed as alternative and complementary methods to authenticate the geographical origin of virgin olive oil.


Foods ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1891
Author(s):  
Eleonora Borello ◽  
Daniele Roncucci ◽  
Valentina Domenici

Spectroscopic non-destructive methods have high potentialities as fast, cheap and easy-to-be-used approaches to address olive oil quality and authenticity. Based on previous research where near-UV Visible spectroscopy was used to investigate extra-virgin olive oils (EVOOs) and their main pigments’ content (i.e., β-carotene, lutein, pheophytin a and pheophytin b), we have implemented the spectral deconvolution method in order to follow the EVOO’s life, from ‘freshly pressed’ to ‘on-the-shelf’ EVOO samples at different storage time. In the first part of the manuscript, the new implemented deconvolution spectroscopic method aimed to quantify two additional pigments, namely chlorophyll a and chlorophyll b, is described and tested on ‘ad hoc’ samples with known concentrations of chlorophylls. The effect of light exposure and acidification was investigated to test the reliability and robustness of the spectral deconvolution. In the second part of the work, this approach was used to study the kinetic of pigments’ degradation in several monocultivar fresh EVOO samples under optimal storage’s conditions. The results here reported show that this spectroscopic deconvolution approach is a good method to study fresh EVOOs too; moreover, the proposed method revealed to be sensitive to detect eventual stresses of olive oil samples stored in not-good conditions.


Sign in / Sign up

Export Citation Format

Share Document