On the distribution of uranium in hair: Non-destructive analysis using synchrotron radiation induced X-ray fluorescence microprobe techniques

2015 ◽  
Vol 108 ◽  
pp. 28-34 ◽  
Author(s):  
A. Israelsson ◽  
M. Eriksson ◽  
H.B.L. Pettersson
1999 ◽  
Vol 363 (4) ◽  
pp. 413-420 ◽  
Author(s):  
K. Janssens ◽  
L. Vincze ◽  
B. Vekemans ◽  
C. T. Williams ◽  
M. Radtke ◽  
...  

10.26879/697 ◽  
2016 ◽  
Vol 19 (3) ◽  
Author(s):  
Yusuke Takeda ◽  
Kazushige Tanabe ◽  
Takenori Sasaki ◽  
Kentaro Uesugi ◽  
Masato Hoshino

1998 ◽  
Vol 524 ◽  
Author(s):  
S. Brennan ◽  
P. Pianetta ◽  
S. Ghosh ◽  
N. Takaura ◽  
C. Wiemer ◽  
...  

ABSTRACTSynchrotron-based total-reflection x-ray fluorescence(SR-TXRF) has been developed as a leading technique for measuring wafer cleanliness. It holds advantages over other techniques in that it is non-destructive and allows mapping of the surface. The highest sensitivity observed thus far is 3x108 atoms/cm 2 (- 3fg) for 1000 second count time. Several applications of SR-TXRF are presented which take advantage of the energy tunability of the synchrotron source or the mapping capability.


1997 ◽  
Vol 297 (2) ◽  
pp. 101-105 ◽  
Author(s):  
Beathe Thu ◽  
Gudmund Skjåk-Bræk ◽  
Fulvio Micali ◽  
Franco Vittur ◽  
Roberto Rizzo

2010 ◽  
pp. 109-117 ◽  
Author(s):  
Neda Motchurova-Dekova ◽  
David Harper

Synchrotron radiation X-ray tomographic microscopy (SRXTM) is a non-destructive technique for the investigation and visualization of the internal features of solid opaque objects, which allows reconstruction of a complete three-dimensional image of internal structures by recording of the differences in the effects on the passage of waves of energy reacting with those structures. Contrary to X-rays, produced in a conventional X-ray tube, the intense synchrotron light beams are sharply focused like a laser beam. We report encouraging results from the use of SRXTM for purely taxonomic purposes in brachiopods: an attempt to find a non-destructive and more efficient alternative to serial sectioning and several other methods of dissection together with the non-destructive method of X-ray computerised micro-tomography. Two brachiopod samples were investigated using SRXTM. In ?Rhynchonella? flustracea it was possible to visualise the 3D shape of the crura and dental plates. In Terebratulina imbricata it was possible to reveal the form of the brachidium. It is encouraging that we have obtained such promising results using SRXTM with our very first two fortuitous samples, which had respectively fine-grained limestone and marl as infilling sediment, in contrast to the discouraging results communicated to us by some colleagues who have tested specimens with such infillings using X-ray micro-tomography. In future the holotypes, rare museum specimens or delicate Recent material may be preferentially subjected to this mode of analysis.


Author(s):  
K. Janssens ◽  
F. Adams ◽  
M.L. Rivers ◽  
K.W. Jones

Micro-SXRF (Synchrotron X-ray Fluorescence) or micro-SRIXE (Synchrotron Radiation Induced X-ray Emission) is a microanalytical technique which combines the sensitivity of more conventional microchemical methods such as Secondary Ion Microscopy (SIMS) and μ-PIXE (Proton Induced X-ray Emission) with the non-destructive and quantitative character of X-ray fluorescence analysis. The detection limits attainable at current SXRF-facilities are situated in the ppm (and in favourable cases the sub-ppm) range. The sensitivity of SRIXE can be used advantageously in individual particle analysis. This type of analysis is used, e.g., for studying sources of athmospheric pollution. Analysis of standard NIST micro-spheres at the NSLS-SRIXE facility yielded minimum detection limits in the 1 to 100 ppm range for particle sizes of around 10 to 30 μm.An interesting approach to individual particle characterisation is by means of electron microprobe analysis (EPMA). By using the backscattered electron signals, in an automated fashion, particles can be easily located on a filter substrate and their size and shape determined.


Sign in / Sign up

Export Citation Format

Share Document