scholarly journals Community structure of a southern Chihuahuan Desert grassland under different grazing pressures

2009 ◽  
Vol 75 (3) ◽  
pp. 510-517 ◽  
Author(s):  
R.I. Yeaton ◽  
J.L. Flores Flores
2005 ◽  
Vol 60 (3) ◽  
pp. 423-436 ◽  
Author(s):  
P. Mielnick ◽  
W.A. Dugas ◽  
K. Mitchell ◽  
K. Havstad

Author(s):  
Debra P. C. Peters ◽  
Robert P. Gibbens

Plant communities of the Jornada Basin are characteristic of the northern Chihuahuan Desert both in structure and dynamics. Although a number of plant communities can be differentiated, five major vegetation types are often distinguished that differ in plant species cover and composition, as well as other factors, such as animal populations, soil properties, and elevation. These five types are black grama (Bouteloua eriopoda) grasslands, playa grasslands, tarbush (Flourensia cernua) shrublands, creosotebush (Larrea tridentata) shrublands, and mesquite (Prosopis grandulosa) shrublands. Similar to many other parts of the Chihuahuan Desert, these plant communities have experienced major shifts in vegetation composition over the past 50–150 years (York and Dick-Peddie 1969). The most dramatic changes in vegetation and associated ecosystem processes have occurred as a result of a shift in life form due to woody plant encroachment into perennial grasslands (Grover and Musick 1990; Bahre and Shelton 1993). This encroachment of shrubs has occurred in many arid and semiarid regions of the world, including the Western United States, northern Mexico, southern Africa, South America, New Zealand, and Australia (McPherson 1997; Scholes and Archer 1997). A number of drivers have been implicated in these grass–shrub dynamics, including various combinations of livestock grazing, small animal activity, drought, changes in fire regime, and changes in climate (Humphrey 1958; Archer 1989; Allred 1996; Reynolds et al. 1997; Van Auken 2000). The causes of shrub invasion are quite variable and often poorly understood, although the consequences consistently lead to the process of desertification (Schlesinger et al. 1990). This chapter describes the characteristics of each vegetation type and the documented changes in each type at the Jornada Basin. We then discuss the key drivers influencing these dynamics. Vegetation in the Chihuahuan Desert region has been classified as desert-grassland transition (Shreve 1917), desert savanna (Shantz and Zon 1924), desert plains grasslands (Clements 1920), desert shrub grassland (Darrow 1944), and shrubsteppe (Kuchler 1964). Desert grassland is often used as a general descriptive name for the area (McClaran 1995), although landscapes at the Jornada and throughout the northern Chihuahuan Desert often consist of a mosaic of desert grasslands, Chihuahuan Desert shrublands, and plains-mesa sand scrub (Dick-Peddie 1993).


2013 ◽  
Vol 6 (3) ◽  
pp. 449-456
Author(s):  
Christopher M. McGlone

AbstractDesert grasslands of the southwestern United States have experienced an increase in the abundance and distribution of woody plant species over the past century. Shrub encroachment has caused a substantial loss of grasslands in the northern Chihuahuan Desert. The Chihuahuan Desert has also been invaded by Lehmann lovegrass, a fire-adapted species from southern Africa. In 1999, the U.S. Department of Agriculture–Agricultural Research Service burned a remnant desert grassland to determine the effects of prescribed fire on shrub–perennial grass dynamics. The grassland also contained the nonnative perennial grass Lehmann lovegrass. I am reporting on a study that was initiated to determine whether prescribed burning would alter the vegetative community within and proximal to a Lehmann lovegrass–dominated patch. Cover of Lehmann lovegrass showed no significant response to the burn treatment. Of the dominant native species, only black grama and broom snakeweed had a significant year by treatment interaction. No species or growth form had a significant vegetation type by year by treatment interaction. After 6 yr, differences between burned and unburned transects were not significant for any species or growth form.


2004 ◽  
Vol 70 (2) ◽  
pp. 973-983 ◽  
Author(s):  
Chris M. Yeager ◽  
Jennifer L. Kornosky ◽  
David C. Housman ◽  
Edmund E. Grote ◽  
Jayne Belnap ◽  
...  

ABSTRACT The objective of this study was to characterize the community structure and activity of N2-fixing microorganisms in mature and poorly developed biological soil crusts from both the Colorado Plateau and Chihuahuan Desert. Nitrogenase activity was approximately 10 and 2.5 times higher in mature crusts than in poorly developed crusts at the Colorado Plateau site and Chihuahuan Desert site, respectively. Analysis of nifH sequences by clone sequencing and the terminal restriction fragment length polymorphism technique indicated that the crust diazotrophic community was 80 to 90% heterocystous cyanobacteria most closely related to Nostoc spp. and that the composition of N2-fixing species did not vary significantly between the poorly developed and mature crusts at either site. In contrast, the abundance of nifH sequences was approximately 7.5 times greater (per microgram of total DNA) in mature crusts than in poorly developed crusts at a given site as measured by quantitative PCR. 16S rRNA gene clone sequencing and microscopic analysis of the cyanobacterial community within both crust types demonstrated a transition from a Microcoleus vaginatus-dominated, poorly developed crust to mature crusts harboring a greater percentage of Nostoc and Scytonema spp. We hypothesize that ecological factors, such as soil instability and water stress, may constrain the growth of N2-fixing microorganisms at our study sites and that the transition to a mature, nitrogen-producing crust initially requires bioengineering of the surface microenvironment by Microcoleus vaginatus.


1988 ◽  
Vol 120 (2) ◽  
pp. 443 ◽  
Author(s):  
D. L. Moorhead ◽  
F. M. Fisher ◽  
W. G. Whitford

Oecologia ◽  
2012 ◽  
Vol 172 (4) ◽  
pp. 1117-1127 ◽  
Author(s):  
Selene Báez ◽  
Scott L. Collins ◽  
William T. Pockman ◽  
Jennifer E. Johnson ◽  
Eric E. Small

Sign in / Sign up

Export Citation Format

Share Document