Aboveground production and species richness of annuals in Chihuahuan Desert grassland and shrubland plant communities

2010 ◽  
Vol 74 (3) ◽  
pp. 378-385 ◽  
Author(s):  
Y. Xia ◽  
D.I. Moore ◽  
S.L. Collins ◽  
E.H. Muldavin
Author(s):  
Debra P. C. Peters ◽  
Robert P. Gibbens

Plant communities of the Jornada Basin are characteristic of the northern Chihuahuan Desert both in structure and dynamics. Although a number of plant communities can be differentiated, five major vegetation types are often distinguished that differ in plant species cover and composition, as well as other factors, such as animal populations, soil properties, and elevation. These five types are black grama (Bouteloua eriopoda) grasslands, playa grasslands, tarbush (Flourensia cernua) shrublands, creosotebush (Larrea tridentata) shrublands, and mesquite (Prosopis grandulosa) shrublands. Similar to many other parts of the Chihuahuan Desert, these plant communities have experienced major shifts in vegetation composition over the past 50–150 years (York and Dick-Peddie 1969). The most dramatic changes in vegetation and associated ecosystem processes have occurred as a result of a shift in life form due to woody plant encroachment into perennial grasslands (Grover and Musick 1990; Bahre and Shelton 1993). This encroachment of shrubs has occurred in many arid and semiarid regions of the world, including the Western United States, northern Mexico, southern Africa, South America, New Zealand, and Australia (McPherson 1997; Scholes and Archer 1997). A number of drivers have been implicated in these grass–shrub dynamics, including various combinations of livestock grazing, small animal activity, drought, changes in fire regime, and changes in climate (Humphrey 1958; Archer 1989; Allred 1996; Reynolds et al. 1997; Van Auken 2000). The causes of shrub invasion are quite variable and often poorly understood, although the consequences consistently lead to the process of desertification (Schlesinger et al. 1990). This chapter describes the characteristics of each vegetation type and the documented changes in each type at the Jornada Basin. We then discuss the key drivers influencing these dynamics. Vegetation in the Chihuahuan Desert region has been classified as desert-grassland transition (Shreve 1917), desert savanna (Shantz and Zon 1924), desert plains grasslands (Clements 1920), desert shrub grassland (Darrow 1944), and shrubsteppe (Kuchler 1964). Desert grassland is often used as a general descriptive name for the area (McClaran 1995), although landscapes at the Jornada and throughout the northern Chihuahuan Desert often consist of a mosaic of desert grasslands, Chihuahuan Desert shrublands, and plains-mesa sand scrub (Dick-Peddie 1993).


Oecologia ◽  
2012 ◽  
Vol 172 (4) ◽  
pp. 1117-1127 ◽  
Author(s):  
Selene Báez ◽  
Scott L. Collins ◽  
William T. Pockman ◽  
Jennifer E. Johnson ◽  
Eric E. Small

Forests ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 552
Author(s):  
Janez Kermavnar ◽  
Lado Kutnar ◽  
Aleksander Marinšek

Forest herb-layer vegetation responds sensitively to environmental conditions. This paper compares drivers of both taxonomic, i.e., species richness, cover and evenness, and functional herb-layer diversity, i.e., the diversity of clonal, bud bank and leaf-height-seed plant traits. We investigated the dependence of herb-layer diversity on ecological determinants related to soil properties, climatic parameters, forest stand characteristics, and topographic and abiotic and biotic factors associated with forest floor structure. The study was conducted in different forest types in Slovenia, using vegetation and environmental data from 50 monitoring plots (400 m2 each) belonging to the ICP Forests Level I and II network. The main objective was to first identify significant ecological predictors and then quantify their relative importance. Species richness was strongly determined by forest stand characteristics, such as richness of the shrub layer, tree layer shade-casting ability as a proxy for light availability and tree species composition. It showed a clear positive relation to soil pH. Variation in herb-layer cover was also best explained by forest stand characteristics and, to a lesser extent, by structural factors such as moss cover. Species evenness was associated with tree species composition, shrub layer cover and soil pH. Various ecological determinants were decisive for the diversity of below-ground traits, i.e., clonal and bud bank traits. For these two trait groups we observed a substantial climatic signal that was completely absent for taxonomy-based measures of diversity. In contrast, above-ground leaf-height-seed (LHS) traits were driven exclusively by soil reaction and nitrogen availability. In synthesis, local stand characteristics and soil properties acted as the main controlling factors for both species and trait diversity in herb-layer communities across Slovenia, confirming many previous studies. Our findings suggest that the taxonomic and functional facets of herb-layer vegetation are mainly influenced by a similar set of ecological determinants. However, their relative importance varies among individual taxonomy- and functional trait-based diversity measures. Integrating multi-faceted approaches can provide complementary information on patterns of herb-layer diversity in European forest plant communities.


2005 ◽  
Vol 60 (3) ◽  
pp. 423-436 ◽  
Author(s):  
P. Mielnick ◽  
W.A. Dugas ◽  
K. Mitchell ◽  
K. Havstad

2021 ◽  
Author(s):  
Jiang Wang ◽  
Yuan Ge ◽  
J. Hans C. Cornelissen ◽  
Xiaoyan Wang ◽  
Song Gao ◽  
...  

Abstract Biodiversity loss, exotic plant invasions and climatic change are currently the three major challenges to our globe and can each affect various ecological processes, including litter composition. To gain a better understanding of global change impacts on ecological processes, these three global change components need to be considered simultaneously. Here we assembled experimental plant communities with species richness levels (1, 2, 4, 8 or 16) and subjected them to drought (no, moderate or intensive drought) and invasion (invasion by the exotic annual plant Symphyotrichum subulatum or not). We collected litter of the native plant communities and let it decompose for nine months within the communities. Drought decreased litter decomposition, while the exotic plant invasion had no impact. Increasing species richness decreased litter decomposition under the mesic condition (no drought), but had little impact under moderate and intensive drought. A structural equation model showed that drought and species richness affected litter decomposition mainly via influencing litter nitrogen concentration, but not via altering the quantity and diversity of soil meso-fauna or soil physio-chemical properties. The negative impact of species diversity on litter decomposition under the mesic condition was mainly ascribed to a sampling effect, i.e. via particularly low litter nitrogen concentrations in the two dominant species. Our results indicate that species richness can interact with drought to affect litter decomposition via effect on litter nitrogen. We conclude that nitrogen-dependent litter decomposition should be a mechanism to predict integrated effects of plant diversity loss, exotic plant invasions and climatic change on litter decomposition.


Sign in / Sign up

Export Citation Format

Share Document