Multiscale simulations of protein and membrane systems

2022 ◽  
Vol 72 ◽  
pp. 203-208
Author(s):  
Kevin Sawade ◽  
Christine Peter
Author(s):  
Robert M. Glaeser ◽  
David W. Deamer

In the investigation of the molecular organization of cell membranes it is often supposed that lipid molecules are arranged in a bimolecular film. X-ray diffraction data obtained in a direction perpendicular to the plane of suitably layered membrane systems have generally been interpreted in accord with such a model of the membrane structure. The present studies were begun in order to determine whether selected area electron diffraction would provide a tool of sufficient sensitivity to permit investigation of the degree of intermolecular order within lipid films. The ultimate objective would then be to apply the method to single fragments of cell membrane material in order to obtain data complementary to the transverse data obtainable by x-ray diffraction.


Author(s):  
Jan Andzelm ◽  
Frederick L. Beyer ◽  
James Snyder ◽  
Peter W. Chung

2013 ◽  
Vol 2 (2) ◽  
pp. 109-118 ◽  
Author(s):  
Simona Salerno ◽  
Sabrina Morelli ◽  
Enrico Drioli ◽  
Augustinus Bader ◽  
Loredana Bartolo

2021 ◽  
Vol 8 (1) ◽  
pp. 89-95
Author(s):  
Micol Palmieri ◽  
Ilaria Giannetti ◽  
Andrea Micheletti

Abstract This is a conceptual work about the form-finding of a hybrid tensegrity structure. The structure was obtained from the combination of arch-supported membrane systems and diamond-type tensegrity systems. By combining these two types of structures, the resulting system features the “tensile-integrity” property of cables and membrane together with what we call “floating-bending” of the arches, a term which is intended to recall the words “floating-compression” introduced by Kenneth Snelson, the father of tensegrities. Two approaches in the form-finding calculations were followed, the Matlab implementation of a simple model comprising standard constant-stress membrane/cable elements together with the so-called stick-and-spring elements for the arches, and the analysis with the commercial software WinTess, used in conjunction with Rhino and Grasshopper. The case study of a T3 floating-bending tensile-integrity structure was explored, a structure that features a much larger enclosed volume in comparison to conventional tensegrity prisms. The structural design of an outdoor pavilion of 6 m in height was carried out considering ultimate and service limit states. This study shows that floating-bending structures are feasible, opening the way to the introduction of suitable analysis and optimization procedures for this type of structures.


Author(s):  
Artiom Alhazov ◽  
Rudolf Freund ◽  
Sergiu Ivanov

AbstractCatalytic P systems are among the first variants of membrane systems ever considered in this area. This variant of systems also features some prominent computational complexity questions, and in particular the problem of using only one catalyst in the whole system: is one catalyst enough to allow for generating all recursively enumerable sets of multisets? Several additional ingredients have been shown to be sufficient for obtaining computational completeness even with only one catalyst. In this paper, we show that one catalyst is sufficient for obtaining computational completeness if either catalytic rules have weak priority over non-catalytic rules or else instead of the standard maximally parallel derivation mode, we use the derivation mode maxobjects, i.e., we only take those multisets of rules which affect the maximal number of objects in the underlying configuration.


Sign in / Sign up

Export Citation Format

Share Document