scholarly journals Assessing Mechanical Engineering Undergraduates’ Conceptual Knowledge in Three Dimensional Computer Aided Design (3D CAD)

2012 ◽  
Vol 56 ◽  
pp. 1-11
Author(s):  
Mohd Fadzil Daud ◽  
Jamaluddin Mohd Taib ◽  
Rio Sumarni Shariffudin
Author(s):  
Mohd Fadzil Daud ◽  
Jamaluddin Mohd Taib ◽  
Rio Sumarni Shariffudin

Research on the relation between conceptual and procedural knowledge has shown that fusing them enhances understanding of domain knowledge. Various methods have been developed to assess undergraduates’ conceptual understanding of a particular domain. Nevertheless, in the teaching and learning of Computer Aided Design (CAD) in higher education, students were not assessed on their conceptual understanding on the utilization of the software. The assessments of outcome were based on procedural or command knowledge rather than the conceptual understanding, which is usually associated with a particular subject matter. In addition, both types of knowledge are emphasized within the context of achieving outcomes of domain related subject matter such as Machine Design or Technical Drawing. Some students might not be aware that there are concepts underlying the procedure they are using. As such, students’ conceptual knowledge in Three Dimensional Computer Aided Design (3D CAD) is as important as their procedural knowledge. The question now arises as to whether the students acquire adequate conceptual knowledge through a formal or informal learning process in higher institution before they are employed by manufacturing industries. This chapter briefly discusses the concept of developing 3D CAD model. Then, categories of the essential concepts in the development of the model are presented. Implementation of Concept Map to assess students’ conceptual understanding on 3D modeling technique will be addressed.


2021 ◽  
Vol 11 (4) ◽  
pp. 145
Author(s):  
Nenad Bojcetic ◽  
Filip Valjak ◽  
Dragan Zezelj ◽  
Tomislav Martinec

The article describes an attempt to address the automatized evaluation of student three-dimensional (3D) computer-aided design (CAD) models. The driving idea was conceptualized under the restraints of the COVID pandemic, driven by the problem of evaluating a large number of student 3D CAD models. The described computer solution can be implemented using any CAD computer application that supports customization. Test cases showed that the proposed solution was valid and could be used to evaluate many students’ 3D CAD models. The computer solution can also be used to help students to better understand how to create a 3D CAD model, thereby complying with the requirements of particular teachers.


Author(s):  
Andreas Faath ◽  
Reiner Anderl

Computer Aided Design (CAD) represents one of the key lectures in the studies of mechanical and process engineering as well as several other engineering disciplines. Furthermore Computer Aided x (CAx) systems are firmly established in the product development process. A new concept of teaching for engineering studies at the Technical University of Darmstadt (TU Darmstadt) derived by project based learning is introduced using CAx process chains i.e. the CAD-Multi Body Simulation (MBS) process chain. For the first time in engineering degree a 3D CAD model is consistently used by different process chains in multiple lectures and exercises during the whole engineering study. The early integration of this 3D CAD model in the second semester lays a foundation for its usage in further lectures, courses, projects and theses. Due to the fact, that this 3D CAD model embodies a university groups’ race car, students are able to deepen their knowledge within the university group “TU Darmstadt Racing Team e.V. (DART)”. Therefore, synergies between private and student activities are promoted, e.g. students acquire knowledge about automotive engineering. Besides the virtual implementation and validation, concepts can use the prototype for implementation and validation. The suitability of the 3D CAD model for CAD education in engineering studies especially the modelling and assembling of parts and assemblies is validated by the coached exercise of the course “Computer Aided Design”. The design education of students with mechanical engineering orientated fields of studies is held as a mandatory course in the second semester of mechanical engineering degrees at TU Darmstadt since 1995 and is solely taught with modern 3D CAD Systems. The MBS process chain is validated by several projects and theses using the McNeil Swendler Corp. (MSC) Software Automated Dynamic Analysis of Mechanical Systems (ADAMS) Car. Students run MBS by using the 3D CAD model. Besides driving maneuvers, stamp tests are simulated. In this context the entire MBS process chain is passed. The 3D CAD model serves as a basis for structures, geometry and the representation of kinematic chains, guided by the 3D CAD models geometry.


Author(s):  
Soonjo Kwon ◽  
Byung Chul Kim ◽  
Duhwan Mun ◽  
Soonhung Han

The required level of detail (LOD) of a three-dimensional computer-aided design (3D CAD) model differs according to its purpose. It is therefore important that users are able to simplify a highly complex 3D CAD model and create a low-complexity one. The simplification of a 3D CAD model requires the application of a simplification operation and evaluation metrics for the geometric elements of the 3D CAD model. The evaluation metrics are used to select those elements that should be removed. The simplification operation removes selected elements in order to simplify the 3D CAD model. In this paper, we propose the graph-based simplification of feature-based 3D CAD models using a method that preserves connectivity. First, new evaluation metrics that consider the discrimination priority among several simplification criteria are proposed. Second, a graph-based refined simplification operation that prevents the separation of a feature-based 3D CAD model into multiple volumes is proposed. Finally, we verify the proposed method by implementing a prototype system and performing simplification experiments using feature-based 3D CAD models.


2003 ◽  
Vol 30 (2) ◽  
pp. 449-459 ◽  
Author(s):  
Jianfei Xu ◽  
S M AbouRizk ◽  
Cam Fraser

Three-dimensional computer-aided design (3D-CAD) systems that integrate critical path method (CPM) algorithms, commonly referred to as four-dimensional computer-aided design (4D-CAD), have received a high level of interest over the past few years due to the insight they offer into constructability and feasibility analysis. This paper outlines an approach that facilitates this modeling method through integration between a commercial 3D-CAD software package and a discrete-event simulation tool. This approach employs a product-based modeling method that integrates simulation models with CAD drawings to provide real-time analysis and improved model accuracy in modeling construction operations. By integrating with 3D-CAD drawings, the models require much less data entry and provide a much higher degree of accuracy. Additionally, during the course of a project, resource and time consumption data can be collected and used to continually update the model, minimizing the use of assumptions and generalized data. This paper provides a short background and literature review to contextualize the problem statement, describes the product atomic component (PAC) used to integrate 3D-CAD and the simulation model, outlines some of the implementation issues in a simulation context, and presents a prototype system with an example application for an earthmoving project.Key words: 4D-CAD, CPM, product atomic component, simulation modeling, integration, earthmoving.


2015 ◽  
Vol 8 (2) ◽  
Author(s):  
Andrew Johnson ◽  
Xianwen Kong ◽  
James Ritchie

The determination of workspace is an essential step in the development of parallel manipulators. By extending the virtual-chain (VC) approach to the type synthesis of parallel manipulators, this technical brief proposes a VC approach to the workspace analysis of parallel manipulators. This method is first outlined before being illustrated by the production of a three-dimensional (3D) computer-aided-design (CAD) model of a 3-RPS parallel manipulator and evaluating it for the workspace of the manipulator. Here, R, P and S denote revolute, prismatic and spherical joints respectively. The VC represents the motion capability of moving platform of a manipulator and is shown to be very useful in the production of a graphical representation of the workspace. Using this approach, the link interferences and certain transmission indices can be easily taken into consideration in determining the workspace of a parallel manipulator.


Sign in / Sign up

Export Citation Format

Share Document