scholarly journals Variable Speed Limit Design to Relieve Traffic Congestion based on Cooperative Vehicle Infrastructure System

2014 ◽  
Vol 138 ◽  
pp. 427-438 ◽  
Author(s):  
Rui Sun ◽  
Jianming Hu ◽  
Xudong Xie ◽  
Zuo Zhang
2018 ◽  
Vol 32 (06) ◽  
pp. 1850077 ◽  
Author(s):  
Shubin Li ◽  
Danni Cao

The variable speed limit (VSL) is a kind of active traffic management method. Most of the strategies are used in the expressway traffic flow control in order to ensure traffic safety. However, the urban expressway system is the main artery, carrying most traffic pressure. It has similar traffic characteristics with the expressways between cities. In this paper, the improved link transmission model (LTM) combined with VSL strategies is proposed, based on the urban expressway network. The model can simulate the movement of the vehicles and the shock wave, and well balance the relationship between the amount of calculation and accuracy. Furthermore, the optimal VSL strategy can be proposed based on the simulation method. It can provide management strategies for managers. Finally, a simple example is given to illustrate the model and method. The selected indexes are the average density, the average speed and the average flow on the traffic network in the simulation. The simulation results show that the proposed model and method are feasible. The VSL strategy can effectively alleviate traffic congestion in some cases, and greatly promote the efficiency of the transportation system.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Xingju Wang ◽  
Rongqun Zhang ◽  
Yang Gou ◽  
Jiayu Liu ◽  
Lin Zhao ◽  
...  

Freeway is an important component of transportation system. Bottleneck areas on freeway reduce driving safety and traffic efficiency. The development of intelligent connected technology provides a new idea for traffic management. In order to alleviate traffic congestion on the freeway bottleneck area, this paper proposes a variable speed limit (VSL) control method in intelligent connected environment. In this paper, the METANET model is improved by combining intelligent connected environment and VSL control theory. The total traffic capacity (TTC), total travel time (TTT), and total speed difference (TSD) are used to build multiobjective function. The microsimulation at SUMO by using the data from PeMS is employed as a case study to validate the proposed model. The results show that the VSL online control method in intelligent connected environment has better control effect. And the improvement is more obvious with increasing penetration rate of intelligent connected vehicle (ICV).


Algorithms ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 266
Author(s):  
Juan Chen ◽  
Qinxuan Feng ◽  
Qi Guo

In order to solve the problem of traffic congestion and emission optimization of urban multi-class expressways, a robust dynamic nondominated sorting multi-objective genetic algorithm DFCM-RDNSGA-III based on density fuzzy c-means clustering method is proposed in this paper. Considering the three performance indicators of travel time, ramp queue and traffic emissions, the ramp metering and variable speed limit control schemes of an expressway are optimized to improve the main road and ramp traffic congestion, therefore achieving energy conservation and emission reduction. In the VISSIM simulation environment, a multi-on-ramp and multi-off-ramp road network is built to verify the performance of the algorithm. The results show that, compared with the existing algorithm NSGA-III, the DFCM-RDNSGA-III algorithm proposed in this paper can provide better ramp metering and variable speed limit control schemes in the process of road network peak formation and dissipation. In addition, the traffic congestion of expressways can be improved and energy conservation as well as emission reduction can also be realized.


2017 ◽  
Vol 11 (10) ◽  
pp. 632-640 ◽  
Author(s):  
Li Zhang ◽  
Lei Zhang ◽  
David K. Hale ◽  
Jia Hu ◽  
Zhitong Huang

2021 ◽  
Vol 11 (6) ◽  
pp. 2574
Author(s):  
Filip Vrbanić ◽  
Edouard Ivanjko ◽  
Krešimir Kušić ◽  
Dino Čakija

The trend of increasing traffic demand is causing congestion on existing urban roads, including urban motorways, resulting in a decrease in Level of Service (LoS) and safety, and an increase in fuel consumption. Lack of space and non-compliance with cities’ sustainable urban plans prevent the expansion of new transport infrastructure in some urban areas. To alleviate the aforementioned problems, appropriate solutions come from the domain of Intelligent Transportation Systems by implementing traffic control services. Those services include Variable Speed Limit (VSL) and Ramp Metering (RM) for urban motorways. VSL reduces the speed of incoming vehicles to a bottleneck area, and RM limits the inflow through on-ramps. In addition, with the increasing development of Autonomous Vehicles (AVs) and Connected AVs (CAVs), new opportunities for traffic control are emerging. VSL and RM can reduce traffic congestion on urban motorways, especially so in the case of mixed traffic flows where AVs and CAVs can fully comply with the control system output. Currently, there is no existing overview of control algorithms and applications for VSL and RM in mixed traffic flows. Therefore, we present a comprehensive survey of VSL and RM control algorithms including the most recent reinforcement learning-based approaches. Best practices for mixed traffic flow control are summarized and new viewpoints and future research directions are presented, including an overview of the currently open research questions.


Sign in / Sign up

Export Citation Format

Share Document