scholarly journals Verbal working memory in schizophrenia from the Consortium on the Genetics of Schizophrenia (COGS) Study: The moderating role of smoking status and antipsychotic medications

2015 ◽  
Vol 163 (1-3) ◽  
pp. 24-31 ◽  
Author(s):  
Junghee Lee ◽  
Michael F. Green ◽  
Monica E. Calkins ◽  
Tiffany A. Greenwood ◽  
Raquel E. Gur ◽  
...  
2015 ◽  
Vol 6 (1) ◽  
pp. 16 ◽  
Author(s):  
Anne-Laure Oftinger ◽  
Valerie Camos

<p>Previous research in adults has indicated two maintenance mechanisms of verbal information in working memory, i.e., articulatory rehearsal and attentional refreshing. However, only three studies have examined their joint contribution to children’s verbal working memory. The present study aimed at extending this line of research by investigating the developmental changes occurring from 6 to 9 years old. In two experiments using complex span tasks, children of three different age groups maintained letters or words while performing a concurrent task. The opportunity for attentional refreshing was manipulated by varying the attentional demand of the concurrent task. Moreover, this task was performed either silently by pressing keys or aloud, the latter inducing a concurrent articulation. As expected, recall performance increased strongly with age. More interestingly, concurrent articulation had a detrimental effect on recall even in 6-year-old children. Similarly, introducing a concurrent attention-demanding task impaired recall performance at all ages. Finally, the effect of the availability of rehearsal and of attentional refreshing never interacted at any age. This suggested an independence of the two mechanisms in the maintenance of verbal information in children’s working memory. Implications for the development of rehearsal use and for the role of attention in working memory are discussed.</p>


2004 ◽  
Vol 16 (2) ◽  
pp. 289-300 ◽  
Author(s):  
Philip Nixon ◽  
Jenia Lazarova ◽  
Iona Hodinott-Hill ◽  
Patricia Gough ◽  
Richard Passingham

Repetitive transcranial magnetic stimulation (rTMS) offers a powerful new technique for investigating the distinct contributions of the cortical language areas. We have used this method to examine the role of the left inferior frontal gyrus (IFG) in phonological processing and verbal working memory. Functional neuroimaging studies have implicated the posterior part of the left IFG in both phonological decision making and subvocal rehearsal mechanisms, but imaging is a correlational method and it is therefore necessary to determine whether this region is essential for such processes. In this paper we present the results of two experiments in which rTMS was applied over the frontal operculum while subjects performed a delayed phonological matching task. We compared the effects of disrupting this area either during the delay (memory) phase or at the response (decision) phase of the task. Delivered at a time when subjects were required to remember the sound of a visually presented word, rTMS impaired the accuracy with which they subsequently performed the task. However, when delivered later in the trial, as the subjects compared the remembered word with a given pseudoword, rTMS did not impair accuracy. Performance by the same subjects on a control task that required the processing of nonverbal visual stimuli was unaffected by the rTMS. Similarly, performance on both tasks was unaffected by rTMS delivered over a more anterior site (pars triangularis). We conclude that the opercular region of the IFG is necessary for the normal operation of phonologically based working memory mechanisms. Furthermore, this study shows that rTMS can shed further light on the precise role of cortical language areas in humans.


Author(s):  
Yun Lin ◽  
Norio Matsumi

AbstractThe present study investigated how visuospatial working memory (VSWM) is involved in the construction of a spatial situation model for spatial passages presented auditorily. A simple spatial tapping condition, a complex tapping condition as a target-tracking task, and a control condition, were used to analyze the role of VSWM. To understand how individuals who differ in verbal working memory (VWM) capacity (determined with a listening span test) process spatial text during dual-task performance, individual differences in VWM capacity were analyzed. In two experiments, the participants listened to a spatial text at the same time as performing a spatial concurrent task or no concurrent task. The results of the free recall test in Experiment 1 showed that there were no differences between the tapping conditions in the high VWM capacity group; the low VWM capacity group had a lower performance in both spatial tapping tasks compared to the control condition. The results of the map drawing test in Experiment 2 showed that complex spatial tapping impaired performance in comparison to simple spatial tapping and the control condition in the high VWM capacity group; in the low VWM capacity group, both spatial tapping tasks impaired recall performance. In addition, the participants with high VWM capacity demonstrated better performance. Overall, the results suggest that individuals with high VWM capacity have more resources to process verbal and spatial information than those with low VWM capacity, indicating that VWM capacity is related to the degree of the involvement of VSWM.


Sign in / Sign up

Export Citation Format

Share Document