Dynamic changes of antioxidants and fermentative metabolites in apple peel in relation to storage, controlled atmosphere, and initial low oxygen stress

2021 ◽  
Vol 288 ◽  
pp. 110312
Author(s):  
Marina Buccheri ◽  
Valentina Picchi ◽  
Maurizio Grassi ◽  
Davide Gandin ◽  
Giulia Bianchi ◽  
...  
Agriculture ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 491
Author(s):  
Tatenda Gift Kawhena ◽  
Olaniyi Amos Fawole ◽  
Umezuruike Linus Opara

The efficacy of dynamic controlled atmosphere technologies; repeated low oxygen stress (RLOS) and dynamic controlled atmosphere-chlorophyll fluorescence (DCA-CF) to control superficial scald development on ‘Granny Smith’ apples during long-term storage was studied. Fruit were stored for 2, 4, 6, 8, and 10 months at 0 °C in DCA-CF (0.6% O2 and 0.8% CO2), regular atmosphere (RA)(≈21% O2 and 90–95% RH), and RLOS treatments: (1) 0.5% O2 for 10 d followed by ultra-low oxygen (ULO) (0.9% O2 and 0.8% CO2) for 21 d and 0.5% O2 for 7 d or (2) 0.5% O2 for 10 d followed by controlled atmosphere (CA) (1.5% O2 and 1% CO2) for 21 d and 0.5% O2 for 7 d. Development of superficial scald was inhibited for up to 10 months and 7 d shelf life (20 °C) under RLOS + ULO and DCA-CF treatments. Apples stored in RLOS + ULO, RLOS + CA, and DCA-CF had significantly (p < 0.05) higher flesh firmness and total soluble solids. The RLOS phases applied with CA or ULO and DCA-CF storage reduced the development of superficial scald by possibly suppressing the oxidation of volatiles implicated in superficial scald development.


Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3639
Author(s):  
Aurita Butkeviciute ◽  
Jonas Viskelis ◽  
Mindaugas Liaudanskas ◽  
Pranas Viskelis ◽  
Ceslovas Bobinas ◽  
...  

Apples are seasonal fruits, and thus after harvesting apples of optimal picking maturity, it is important to prepare them properly for storage and to ensure proper storage conditions in order to minimize changes in the chemical composition and commercial quality of the apples. We studied the quantitative composition of triterpenic compounds in the whole apple, apple peel and apple flesh samples before placing them in the controlled atmosphere (CA) chambers, and at the end of the experiment, 8 months later. HPLC analysis showed that highest total amount of triterpenic compounds (1.99 ± 0.01 mg g−1) was found in the whole apple samples of the ‘Spartan’ cultivar stored under variant VIII (O2—20%, CO2—3%, N2—77%) conditions. Meanwhile, the highest amount of triterpenic compounds (11.66 ± 0.72 mg g−1) was determined in the apple peel samples of the ‘Auksis’ cultivar stored under variant II (O2—5%, CO2—1%, N2—94%) conditions. In the apple peel samples of the ‘Auksis’ cultivar stored under variant I (O2—21%, CO2—0.03%, N2—78.97%) conditions, the amount of individual triterpenic compounds (ursolic, oleanolic, corosolic, and betulinic acids) significantly decreased compared with amount determined before the storage. Therefore, in the apple flesh samples determined triterpenic compounds are less stable during the storage under controlled atmosphere conditions compared with triterpenic compounds determined in the whole apple and apple peel samples.


2018 ◽  
Vol 99 (3) ◽  
pp. 1088-1097 ◽  
Author(s):  
Zinash A Belay ◽  
Oluwafemi J Caleb ◽  
Pramod V Mahajan ◽  
Umezuruike L Opara

2021 ◽  
Vol 478 (8) ◽  
pp. 1515-1524
Author(s):  
Abir U. Igamberdiev ◽  
Leszek A. Kleczkowski

In the conditions of [Mg2+] elevation that occur, in particular, under low oxygen stress and are the consequence of the decrease in [ATP] and increase in [ADP] and [AMP], pyrophosphate (PPi) can function as an alternative energy currency in plant cells. In addition to its production by various metabolic pathways, PPi can be synthesized in the combined reactions of pyruvate, phosphate dikinase (PPDK) and pyruvate kinase (PK) by so-called PK/PPDK substrate cycle, and in the reverse reaction of membrane-bound H+-pyrophosphatase, which uses the energy of electrochemical gradients generated on tonoplast and plasma membrane. The PPi can then be consumed in its active forms of MgPPi and Mg2PPi by PPi-utilizing enzymes, which require an elevated [Mg2+]. This ensures a continuous operation of glycolysis in the conditions of suppressed ATP synthesis, keeping metabolism energy efficient and less dependent on ATP.


Sign in / Sign up

Export Citation Format

Share Document