scholarly journals Base cations and micronutrients in soil aggregates as affected by enhanced nitrogen and water inputs in a semi-arid steppe grassland

2017 ◽  
Vol 575 ◽  
pp. 564-572 ◽  
Author(s):  
Ruzhen Wang ◽  
Jennifer A.J. Dungait ◽  
Heather L. Buss ◽  
Shan Yang ◽  
Yuge Zhang ◽  
...  
2020 ◽  
Vol 448 (1-2) ◽  
pp. 265-276 ◽  
Author(s):  
Xinyu Wang ◽  
Frank Yonghong Li ◽  
Yanan Wang ◽  
Xinmin Liu ◽  
Jianwei Cheng ◽  
...  

2015 ◽  
Vol 7 (3) ◽  
pp. 361-369 ◽  
Author(s):  
YuGe Zhang ◽  
Shan Yang ◽  
MingMing Fu ◽  
JiangPing Cai ◽  
YongYong Zhang ◽  
...  

2020 ◽  
Author(s):  
Tongrui Zhang ◽  
Frank Yonghong Li ◽  
Hao Wang ◽  
Lin Wu ◽  
Chunjun Shi ◽  
...  

Abstract Aims Nutrient resorption is a key plant nutrient conservation strategy, and its response to environmental and management changes is linked to nutrient cycling and production of ecosystems. Defoliation is a major pathway of mowing affecting plant nutrient resorption and production in grasslands, while the effect of defoliation timing has not been unexplored. The aim of this study was to examine the effect of defoliation timing on plant nutrient resorption and production in a steppe ecosystem. Methods We conducted a field experiment in a semi-arid steppe of Inner Mongolia including four treatments: early defoliation, peak defoliation, late defoliation and non-defoliation. We measured plant nitrogen (N) and phosphorus (P) resorption at species and community levels, and quantified plant N and P fluxes in resorption, litter return and hay output. Plant production in the mowing system was assessed by hay production and quality. Important Findings Peak and late defoliation, but not early defoliation, reduced plant community N and P resorption proficiency (RP); and late defoliation reduced N resorption efficiency (RE) but not P resorption efficiency. Peak and late defoliation, but not early defoliation, reduced plant nutrient resorption flux and litter nutrient return flux. Defoliation timing did not alter root nutrient accumulation as nutrient uptake from soil likely compensated the deficit of nutrient resorption. Peak defoliation had the highest hay production and quality, while early defoliation had the lowest. Our results provide new insights into the nutrient cycling in mowing grassland, and imply that the mowing timing can be used as a tool to mediate the balance between conservation and production of steppes, and the early mowing before plant peak biomass period is recommended for conservation of the steppes while keeping sustainable pastoral production.


Pedobiologia ◽  
2021 ◽  
Vol 85-86 ◽  
pp. 150711
Author(s):  
Jianwei Cheng ◽  
Frank Yonghong Li ◽  
Xinmin Liu ◽  
Xinyu Wang ◽  
Dong Zhao ◽  
...  

2010 ◽  
Vol 24 (18) ◽  
pp. 2507-2519 ◽  
Author(s):  
Y. Zhao ◽  
S. Peth ◽  
X. Y. Wang ◽  
H. Lin ◽  
R. Horn

Solid Earth ◽  
2016 ◽  
Vol 7 (2) ◽  
pp. 549-556 ◽  
Author(s):  
Linyou Lü ◽  
Ruzhen Wang ◽  
Heyong Liu ◽  
Jinfei Yin ◽  
Jiangtao Xiao ◽  
...  

Abstract. Soil coarseness is the main process decreasing soil organic matter and threatening the productivity of sandy grasslands. Previous studies demonstrated negative effect of soil coarseness on soil carbon storage, but less is known about how soil base cations (exchangeable Ca, Mg, K, and Na) and available micronutrients (available Fe, Mn, Cu, and Zn) response to soil coarseness. In a semi-arid grassland of Northern China, a field experiment was initiated in 2011 to mimic the effect of soil coarseness on soil base cations and available micronutrients by mixing soil with different mass proportions of sand: 0 % coarse elements (C0), 10 % (C10), 30 % (C30), 50 % (C50), and 70 % (C70). Soil coarseness significantly increased soil pH in three soil depths of 0–10, 10–20 and 20–40 cm with the highest pH values detected in C50 and C70 treatments. Soil fine particles (smaller than 0.25 mm) significantly decreased with the degree of soil coarseness. Exchangeable Ca and Mg concentrations significantly decreased with soil coarseness degree by up to 29.8 % (in C70) and 47.5 % (in C70), respectively, across three soil depths. Soil available Fe, Mn, and Cu significantly decreased with soil coarseness degree by 62.5, 45.4, and 44.4 %, respectively. As affected by soil coarseness, the increase of soil pH, decrease of soil fine particles (including clay), and decline in soil organic matter were the main driving factors for the decrease of exchangeable base cations (except K) and available micronutrients (except Zn) through soil profile. Developed under soil coarseness, the loss and redistribution of base cations and available micronutrients along soil depths might pose a threat to ecosystem productivity of this sandy grassland.


2002 ◽  
Vol 34 (6) ◽  
pp. 895-898 ◽  
Author(s):  
Fernando T Maestre ◽  
Mayte Huesca ◽  
Eli Zaady ◽  
Susana Bautista ◽  
Jordi Cortina

Sign in / Sign up

Export Citation Format

Share Document