Spatial prediction of landslide susceptibility using hybrid support vector regression (SVR) and the adaptive neuro-fuzzy inference system (ANFIS) with various metaheuristic algorithms

2020 ◽  
Vol 741 ◽  
pp. 139937 ◽  
Author(s):  
Mahdi Panahi ◽  
Amiya Gayen ◽  
Hamid Reza Pourghasemi ◽  
Fatemeh Rezaie ◽  
Saro Lee
Author(s):  
Nripen Mondal ◽  
Madhab Chandra Mandal ◽  
Bishal Dey ◽  
Santanu Das

Burrs are undesirable materials beyond the work piece surface during drilling or other machining processes, thus this should be as less as possible during manufacturing. The experimental study has been conducted according to the full factorial design method. A total of 27 experiments were conducted by drilling on an Aluminum 6061T6 plate by choosing three factors and three levels of process parameters like drill diameter, point angle and spindle speed. In this research article, two predictive models, namely, adaptive neuro-fuzzy inference system and support vector regression, are developed using experimental data to estimate burr height and burr thickness. Then, these predictive models have been used to find out optimum process parameters for minimum burr height and burr thickness using genetic algorithm. It has been found that both the models are able to predict burr size and thickness with good accuracy, while the adaptive neuro-fuzzy inference system performs better than support vector regression.


Sensors ◽  
2020 ◽  
Vol 20 (6) ◽  
pp. 1723 ◽  
Author(s):  
Mohammad Mehrabi ◽  
Biswajeet Pradhan ◽  
Hossein Moayedi ◽  
Abdullah Alamri

Four state-of-the-art metaheuristic algorithms including the genetic algorithm (GA), particle swarm optimization (PSO), differential evolutionary (DE), and ant colony optimization (ACO) are applied to an adaptive neuro-fuzzy inference system (ANFIS) for spatial prediction of landslide susceptibility in Qazvin Province (Iran). To this end, the landslide inventory map, composed of 199 identified landslides, is divided into training and testing landslides with a 70:30 ratio. To create the spatial database, thirteen landslide conditioning factors are considered within the geographic information system (GIS). Notably, the spatial interaction between the landslides and mentioned conditioning factors is analyzed by means of frequency ratio (FR) theory. After the optimization process, it was shown that the DE-based model reaches the best response more quickly than other ensembles. The landslide susceptibility maps were developed, and the accuracy of the models was evaluated by a ranking system, based on the calculated area under the receiving operating characteristic curve (AUROC), mean absolute error, and mean square error (MSE) accuracy indices. According to the results, the GA-ANFIS with a total ranking score (TRS) = 24 presented the most accurate prediction, followed by PSO-ANFIS (TRS = 17), DE-ANFIS (TRS = 13), and ACO-ANFIS (TRS = 6). Due to the excellent results of this research, the developed landslide susceptibility maps can be applied for future planning and decision making of the related area.


Sensors ◽  
2019 ◽  
Vol 19 (4) ◽  
pp. 943 ◽  
Author(s):  
Sadegh Arefnezhad ◽  
Sajjad Samiee ◽  
Arno Eichberger ◽  
Ali Nahvi

This paper presents a novel feature selection method to design a non-invasive driver drowsiness detection system based on steering wheel data. The proposed feature selector can select the most related features to the drowsiness level to improve the classification accuracy. This method is based on the combination of the filter and wrapper feature selection algorithms using adaptive neuro-fuzzy inference system (ANFIS). In this method firstly, four different filter indexes are applied on extracted features from steering wheel data. After that, output values of each filter index are imported as inputs to a fuzzy inference system to determine the importance degree of each feature and select the most important features. Then, the selected features are imported to a support vector machine (SVM) for binary classification to classify the driving conditions in two classes of drowsy and awake. Finally, the classifier accuracy is exploited to adjust parameters of an adaptive fuzzy system using a particle swarm optimization (PSO) algorithm. The experimental data were collected from about 20.5 h of driving in the simulator. The results show that the drowsiness detection system is working with a high accuracy and also confirm that this method is more accurate than the recent available algorithms.


Sign in / Sign up

Export Citation Format

Share Document