Exploration of the potential capacity of fly ash and bottom ash derived from wood pellet-based thermal power plant for heavy metal removal

2020 ◽  
Vol 740 ◽  
pp. 140205 ◽  
Author(s):  
Jong-Hwan Park ◽  
Ju-Hyun Eom ◽  
Su-Lim Lee ◽  
Se-Wook Hwang ◽  
Seong-Heon Kim ◽  
...  
2013 ◽  
Vol 2 (1) ◽  
pp. 51-57

A main problem related to coal ash disposal is the heavy metal content of the residue. In this regard, experimental results of numerous studies have indicated that toxic trace metals may leach when fly ash and bottom ash contacts with water. In this study, fly ash and bottom ash samples obtained from Kemerköy thermal power plant, located on the south-western coast of Turkey, were subjected to toxicity tests such as the extraction procedures (EP) and toxicity characteristic leaching procedures (TCLP) of the U.S. Environmental Protection Agency (U.S. EPA), the so-called Method A extraction procedure of the American Society of Testing and Material (ASTM). When Pb and Cd concentrations, analysed according to EP and TCLP, were considered, Kemerköy fly and bottom ash can be classified as a hazardous waste under the principles of the Federal Resource Conservation and Recovery Act (RCRA). Based on the geochemical analyses carried out, it was also determined that several toxic trace elements, such as Pb, Zn, Cd, Cu and Co were enriched at the fly and bottom ash of Kemerköy thermal power plant.


Author(s):  
Manoj Kumar Ghosh ◽  
Harsha Tiwari

The present study focused on the groundwater contamination due to fly ash disposal of coal-fired thermal power plant into a non-liner ash pond. Tendubhata were selected as study site around ash pond of Marwa thermal power plant. Groundwater samples were collected on random basis using composite sampling method. Ten heavy metals (Ca, Cu, Cd, Cl, Zn, Pb, Ni, Cr, Mn, and Fe) were detected in coal, fly ash, and groundwater samples. Heavy metal concentration in coal and fly ash was assessed by Energy Dispersive X-ray Fluorescence, while AAS was used for groundwater assessment. The observed results revealed the exceeding value of heavy metals prescribed by WHO for groundwater.


2013 ◽  
Vol 12 (2) ◽  
pp. 337-342 ◽  
Author(s):  
Firuta Goga ◽  
Roxana Dudric ◽  
Calin Cormos ◽  
Florica Imre ◽  
Liliana Bizo ◽  
...  

2015 ◽  
Vol 3 (3) ◽  
pp. 1669-1677 ◽  
Author(s):  
Mohammad S. Al-Harahsheh ◽  
Kamel Al Zboon ◽  
Leema Al-Makhadmeh ◽  
Muhannad Hararah ◽  
Mehaysen Mahasneh

2013 ◽  
Vol 594-595 ◽  
pp. 527-531
Author(s):  
Mohamad Ezad Hafez Mohd Pahroraji ◽  
Hamidah Mohd Saman ◽  
Mohamad Nidzam Rahmat ◽  
Kartini Kamaruddin ◽  
Ahmad Faiz Abdul Rashid

Millions tons of coal ash which constitute of fly ash and bottom ash were produced annually throughout the world. They were significant to be developed as masonry brick to substitute the existing widely used traditional material such as clay and sand brick which were produced from depleting and dwindling natural resources. In the present study, the coal ash from coal-fired thermal power plant was used as the main raw material for the fabrication of cementless unfired lightweight brick. The binder comprising of Hydrated Lime (HL)-activated Ground Granulated Blastfurnace Slag (GGBS) system at binding ratio 30:70, 50:50 and 70:30 were used to stabilize the coal ash in the fabrication process of the brick. Foam was used to lightweight the brick. The compressive strength and ambient density were evaluated on the brick. The results indicated that the brick incorporating HL-GGBS system achieved higher strength of 20.84N/mm2 at 28 days compare to the HL system with strength of 13.98N/mm2 at 28 days. However, as the quantity of foam increase at 0%, 25%, 50%, 75% and 100%, the strength and density for the brick decreased.


Sign in / Sign up

Export Citation Format

Share Document