Biological power generation and earthworm assisted sludge treatment wetland to remove organic matter in sludge and synchronous power generation

2021 ◽  
Vol 776 ◽  
pp. 145909
Author(s):  
Huiyuan Zhong ◽  
Xiao Liu ◽  
Yang Tian ◽  
Ying Zhang ◽  
Chang Liu
2017 ◽  
Vol 76 (12) ◽  
pp. 3269-3277 ◽  
Author(s):  
B. Neethu ◽  
M. M. Ghangrekar

Abstract Sediment microbial fuel cells (SMFCs) are bio-electrochemical devices generating electricity from redox gradients occurring across the sediment–water interface. Sediment microbial carbon-capture cell (SMCC), a modified SMFC, uses algae grown in the overlying water of sediment and is considered as a promising system for power generation along with algal cultivation. In this study, the performance of SMCC and SMFC was evaluated in terms of power generation, dissolved oxygen variations, sediment organic matter removal and algal growth. SMCC gave a maximum power density of 22.19 mW/m2, which was 3.65 times higher than the SMFC operated under similar conditions. Sediment organic matter removal efficiencies of 77.6 ± 2.1% and 61.0 ± 1.3% were obtained in SMCC and SMFC, respectively. With presence of algae at the cathode, a maximum chemical oxygen demand and total nitrogen removal efficiencies of 63.3 ± 2.3% (8th day) and 81.6 ± 1.2% (10th day), respectively, were observed. The system appears to be favorable from a resources utilization perspective as it does not depend on external aeration or membranes and utilizes algae and organic matter present in sediment for power generation. Thus, SMCC has proven its applicability for installation in an existing oxidation pond for sediment remediation, algae growth, carbon conversion and power generation, simultaneously.


Water SA ◽  
2018 ◽  
Vol 34 (5) ◽  
pp. 657 ◽  
Author(s):  
B.B. Mamba ◽  
R.W. Krause ◽  
T.J. Malefetse ◽  
G Gericke ◽  
S.P. Sithole

2003 ◽  
Vol 47 (12) ◽  
pp. 43-48 ◽  
Author(s):  
J. Keller ◽  
K. Hartley

Many practical design and operating decisions on wastewater treatment plants can have significant impacts on the overall environmental performance, in particular the greenhouse gas (GHG) emissions. The main factor in this regard is the use of aerobic or anaerobic treatment technology. This paper compares the GHG production of a number of case studies with aerobic or anaerobic main and sludge treatment of domestic wastewater and also looks at the energy balances and economics. This comparison demonstrates that major advantages can be gained by using primarily anaerobic processes as it is possible to largely eliminate any net energy input to the process, and therefore the production of GHG from fossil fuels. This is achieved by converting the energy of the incoming wastewater pollutants to methane which is then used to generate electricity. This is sufficient to power the aerobic processes as well as the mixing etc. of the anaerobic stages. In terms of GHG production, the total output (in CO2 equivalents) can be reduced from 2.4 kg CO2/kg CODremoved for fully aerobic treatment to 1.0 kg CO2/kg CODremoved for primarily anaerobic processes. All of the CO2 produced in the anaerobic processes comes from the wastewater pollutants and is therefore greenhouse gas neutral, whereas up to 1.4 kg CO2/kg CODremoved originates from power generation for the fully aerobic process. This means that considerably more CO2 is produced in power generation than in the actual treatment process, and all of this is typically from fossil fuels, whereas the energy from the wastewater pollutants comes primarily from renewable energy sources, namely agricultural products. Even a change from anaerobic to aerobic sludge treatment processes (for the same aerobic main process) has a massive impact on the CO2 production from fossil fuels. An additional 0.8 kg CO2/kg CODremoved is produced by changing to aerobic sludge digestion, which equates for a typical 100,000 EP plant to an additional production of over 10 t CO2 per day. Preliminary cost estimates confirm that the largely anaerobic process option is a fully competitive alternative to the mainly aerobic processes used, while achieving the same effluent quality.


2012 ◽  
Vol 46 (16) ◽  
pp. 5305-5315 ◽  
Author(s):  
Vincent Gagnon ◽  
Florent Chazarenc ◽  
Margit Kõiv ◽  
Jacques Brisson

2017 ◽  
Vol 76 (2) ◽  
pp. 355-363 ◽  
Author(s):  
Grazia Masciandaro ◽  
Eleonora Peruzzi ◽  
Steen Nielsen

In this study, results about sludge stabilization in sludge treatment reed bed (STRB) systems in two different systems, Hanningfield STRB 1 (England), treating waterworks sludge, and Stenlille STRB 2 (Denmark), treating surplus activated sludge, are presented. The study mainly focused on the effectiveness of the STRBs systems in stabilizing sludge organic matter; in fact, parameters correlated to biochemical and chemico-structural properties of organic sludge matter were determined. Dewatering and sludge stabilization were effective in both STRBs, as highlighted by total and volatile dry solids trend. β-glucosidase, phosphatase, arylsulphatase, leucine amino-peptidase and butyrate esterase activities, enzymes related to C, P, S, N and overall microbial activity, respectively, significantly declined along the profile in both STRBs. The determination of humic carbon highlighted the formation of a stable nucleus of humified organic matter in both STRBs in the deepest layers, thus meaning the successful stabilization of sludge organic matter for both kind of sludges. Similar conclusions can be drawn from pyrolysis gas chromatography analysis (Py-GC), which enables the characterization of soil organic matter quality from a chemical-structural point of view. The pyrolytic indices of mineralization and humification showed that in both STRBs the sludge organic matter is well stabilized.


1992 ◽  
Vol 26 (5-6) ◽  
pp. 1097-1104 ◽  
Author(s):  
A. Lyngå ◽  
P. Balmér

Post-nitrification and recycling of the nitrified effluent to an anoxic zone in an activated sludge system for denitrification is proposed as a potentially cost-effective method for nitrogen removal in existing activated sludge treatment plants. Denitrification in a non-nitrifying activated sludge system with a SRT of 3-4 days has been studied in pilot scale. The results show that denitrification rates of at least 10 g N03-N/(kgVSS h) can be achieved. At COD/NO3-N ratios above 15, nitrate supply appears to control the denitrification rate while at COD/NO3-N ratios below 15 the rate appears to be controlled by the supply of easily biodegradable organic matter.


2011 ◽  
Vol 37 (5) ◽  
pp. 771-778 ◽  
Author(s):  
Eleonora Peruzzi ◽  
Grazia Masciandaro ◽  
Cristina Macci ◽  
Serena Doni ◽  
Sandra G. Mora Ravelo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document