Highly efficient AgBr/h-MoO3 with charge separation tuning for photocatalytic degradation of trimethoprim: Mechanism insight and toxicity assessment

Author(s):  
Zhengqing Cai ◽  
Yougui Song ◽  
Xibiao Jin ◽  
Chongchen Wang ◽  
Haodong Ji ◽  
...  
2021 ◽  
Vol 9 (1) ◽  
pp. 482-491
Author(s):  
Jiakun Wu ◽  
Bowen Sun ◽  
Hui Wang ◽  
Yanyan Li ◽  
Ying Zuo ◽  
...  

Unique 2D heterostructures CdxZn1−xIn2S4–CdS–MoS2 with effective charge separation, excellent light-harvest, and abundant active sites are highly-efficient for photocatalytic H2 evolution.


Author(s):  
Heeseon Lim ◽  
Sena Yang ◽  
Sang-Hoon Lee ◽  
Jung-Yong Lee ◽  
Yeunhee Lee ◽  
...  

To achieve a highly efficient organic solar cell (OPVs), control of molecular orientation is one of prime important factors, for interfacial dipole orientation and energy offset at donor/acceptor (D/A) interface...


Nanoscale ◽  
2021 ◽  
Author(s):  
Bing Fu ◽  
Zhijiao Wu ◽  
Kai Guo ◽  
Lingyu Piao

Owing to their scientific and technological importance, the development of highly efficient photocatalytic water oxidation systems with rapid photogenerated charge separation and high surface catalytic activity has highly desirable for...


Crystals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 717
Author(s):  
Hassan Algadi ◽  
Ahmad Umar ◽  
Hasan Albargi ◽  
Turki Alsuwian ◽  
Sotirios Baskoutas

A low-cost and simple drop-casting method was used to fabricate a carbon nanodot (C-dot)/all-inorganic perovskite (CsPbBr3) nanosheet bilayer heterojunction photodetector on a SiO2/Si substrate. The C-dot/perovskite bilayer heterojunction photodetector shows a high performance with a responsivity (R) of 1.09 A/W, almost five times higher than that of a CsPbBr3-based photodetector (0.21 A/W). In addition, the hybrid photodetector exhibits a fast response speed of 1.318/1.342 µs and a highly stable photocurrent of 6.97 µA at 10 V bias voltage. These figures of merits are comparable with, or much better than, most reported perovskite heterojunction photodetectors. UV–Vis absorption and photoluminescent spectra measurements reveal that the C-dot/perovskite bilayer heterojunction has a band gap similar to the pure perovskite layer, confirming that the absorption and emission in the bilayer heterojunction is dominated by the top layer of the perovskite. Moreover, the emission intensity of the C-dot/perovskite bilayer heterojunction is less than that of the pure perovskite layer, indicating that a significant number of charges were extracted by the C-dot layer. The studied band alignment of the C-dots and perovskites in the dark and under emission reveals that the photodetector has a highly efficient charge separation mechanism at the C-dot/perovskite interface, where the recombination rate between photogenerated electrons and holes is significantly reduced. This highly efficient charge separation mechanism is the main reason behind the enhanced performance of the C-dot/perovskite bilayer heterojunction photodetector.


Sign in / Sign up

Export Citation Format

Share Document