Assessing the impact of climate change −and its uncertainty− on snow cover areas by using cellular automata models and stochastic weather generators

Author(s):  
Antonio-Juan Collados-Lara ◽  
Eulogio Pardo-Igúzquiza ◽  
David Pulido-Velazquez
1970 ◽  
Vol 16 (1) ◽  
Author(s):  
Andrew Gorman-Murray

In Australia, snow is associated with alpine and subalpine regions in rural areas; snow is a component of ‘natural’ rather than urban environments. But the range, depth and duration of Australia’s regional snow cover is imperilled by climate change. While researchers have considered the impacts of snow retreat on the natural environment and responses from the mainland ski industry, this paper explores associated cultural and emotional dimensions of climate change. This responds to calls to account for local meanings of climate, and thus localised perceptions of and responses to climate change. Accordingly, this paper presents a case study of reactions to the affect of climate change on Tasmania’s snow country. Data is drawn from a nationwide survey of responses to the impact of climate change on Australia’s snow country, and a Tasmanian focus group. Survey respondents suggested the uneven distribution of Australia’s snow country means snow cover loss may matter more in certain areas: Tasmania was a key example cited by residents of both that state and others. Focus group respondents affirmed a connection between snow and Tasmanian cultural identity, displaying sensitivity to recent changing snow patterns. Moreover, they expressed concerns about the changes using emotive descriptions of local examples: the loss of snow cover mattered culturally and emotionally, compromising local cultural activities and meanings, and invoking affective responses. Simultaneously, respondents were ‘realistic’ about how important snow loss was, especially juxtaposed with sea level rise. Nevertheless, the impact of climate change on cultural and emotional attachments can contribute to urgent ethical, practical and political arguments about arresting global warming.


Author(s):  
N. Maidanovych ◽  

The purpose of this work is to review and analyze the main results of modern research on the impact of climate change on the agro-sphere of Ukraine. Results. Analysis of research has shown that the effects of climate change on the agro-sphere are already being felt today and will continue in the future. The observed climate changes in recent decades have already significantly affected the shift in the northern direction of all agro-climatic zones of Europe, including Ukraine. From the point of view of productivity of the agro-sphere of Ukraine, climate change will have both positive and negative consequences. The positives include: improving the conditions of formation and reducing the harvesting time of crop yields; the possibility of effective introduction of late varieties (hybrids), which require more thermal resources; improving the conditions for overwintering crops; increase the efficiency of fertilizer application. Model estimates of the impact of climate change on wheat yields in Ukraine mainly indicate the positive effects of global warming on yields in the medium term, but with an increase in the average annual temperature by 2 ° C above normal, grain yields are expected to decrease. The negative consequences of the impact of climate change on the agrosphere include: increased drought during the growing season; acceleration of humus decomposition in soils; deterioration of soil moisture in the southern regions; deterioration of grain quality and failure to ensure full vernalization of grain; increase in the number of pests, the spread of pathogens of plants and weeds due to favorable conditions for their overwintering; increase in wind and water erosion of the soil caused by an increase in droughts and extreme rainfall; increasing risks of freezing of winter crops due to lack of stable snow cover. Conclusions. Resource-saving agricultural technologies are of particular importance in the context of climate change. They include technologies such as no-till, strip-till, ridge-till, which make it possible to partially store and accumulate mulch on the soil surface, reduce the speed of the surface layer of air and contribute to better preservation of moisture accumulated during the autumn-winter period. And in determining the most effective ways and mechanisms to reduce weather risks for Ukrainian farmers, it is necessary to take into account the world practice of climate-smart technologies.


2012 ◽  
Vol 20 (1) ◽  
pp. 108-115 ◽  
Author(s):  
Wu Weiwei ◽  
Xu Haigen ◽  
Wu Jun ◽  
Cao Mingchang

Sign in / Sign up

Export Citation Format

Share Document