Effects of low impact development on the stormwater runoff and pollution control

2022 ◽  
Vol 805 ◽  
pp. 150404
Author(s):  
Gongduan Fan ◽  
Ruisheng Lin ◽  
Zhongqing Wei ◽  
Yougan Xiao ◽  
Haidong Shangguan ◽  
...  
2016 ◽  
Vol 73 (12) ◽  
pp. 2921-2928 ◽  
Author(s):  
Marla C. Maniquiz-Redillas ◽  
Lee-Hyung Kim

Abstract In this research, an infiltration trench equipped with an extensive pretreatment and filter bed consisting of woodchip, sand and gravel was utilized as a low impact development technique to manage stormwater runoff from a highly impervious road with particular emphasis on heavy metal removal. Findings revealed that the major factors influencing the removal of heavy metals were the concentration of the particulate matters and heavy metals in runoff, runoff volume and flow rates. The reduction of heavy metals was enhanced by sedimentation of particulates through pretreatment. Fine particles (<2 mm) had the most significant amount of heavy metals, thus, enhanced adsorption and filtration using various filter media were important design considerations. Sediment was most highly attached on the surface area of woodchip than to other filter media like sand, gravel and geotextile. It is suggested that maintenance must be performed after the end of the winter season wherein high sediment rate was observed to maintain the efficiency of the treatment system.


2018 ◽  
Vol 10 (1) ◽  
pp. 53-62 ◽  
Author(s):  
Junqi Li ◽  
Yongwei Gong ◽  
Xiaojing Li ◽  
Dingkun Yin ◽  
Honghong Shi

Abstract Thermal pollution has become a severe environmental problem in China, but studies on thermal characteristics of urban stormwater runoff are scarce. The thermal enrichment of runoff from typical land surfaces was assessed during 2012–2014 in Beijing and Shenzhen, China. The temperature of stormwater runoff from rooftops, grass surfaces and different types of road surfaces was investigated under different rainfall conditions. The mitigation effects of low impact development (LID) measures were also evaluated. Impervious asphalt or concrete surfaces store and transfer heat, and were found to cause thermal enrichment of runoff from the start of a rainfall event. In addition to surface types, pre-event weather conditions and rainfall intensity influenced runoff temperature. The pervious surface of open graded friction course (OGFC) pavement postponed the time of peak runoff temperature. The retention volume of bioretention cells resulted in thermal energy mitigation by directing runoff into the soil and vegetative cover. The grass swales showed effective reduction of runoff temperature by approximately 1–2°C compared to asphalt, concrete and marble pavements. Therefore, LID measures, such as OGFC porous pavements, bioretention cells and grass swales, can mitigate the thermal impacts of urban stormwater runoff and alleviate resulting ecological problems.


Author(s):  
Yixin Zhang ◽  
Weihan Zhao ◽  
Xue Chen ◽  
Changhyun Jun ◽  
Jianli Hao ◽  
...  

Stormwater management is a key urban issue in the world, in line with the global issues of urban sprawl and climate change. It is urgent to investigate the effectiveness in managing stormwater with different strategies for maintain urban resilience. A method based on a storm water management model (SWMM) was developed for assessing the control of stormwater runoff volume and the percentage removal of suspended solids by implementing a Sponge City strategy. An interdisciplinary approach was adopted incorporating Low Impact Development (LID) with urban Green Infrastructure and Gray Infrastructure paradigms in a typical old residential community in Suzhou, China. Four types of sponge facilities for reducing stormwater runoff were bio-retention cells, permeable pavements, grassed pitches, and stormwater gardens. The simulation results indicate that the stormwater pipe system can meet the management standard for storms with a five-year recurrence interval. The volume capture ratio of annual runoff is 91% and the reduction rate of suspended solids is 56%. This study demonstrates that Sponge City strategy is an effective approach for managing stormwater, particularly in old and densely populated urban areas. Implementing spongy facilities with a LID strategy for stormwater management can significantly enhance urban water resilience and increase ecosystem services.


2018 ◽  
Vol 53 ◽  
pp. 04045
Author(s):  
Xueling Xu ◽  
Aihong Kang ◽  
Zhingping Lu ◽  
Keke lou ◽  
Changjiang Kou

The concentrations of pollutants in pavement runoff are higher than those in other surface runoff normally, which causes serious problems in protecting the environment of receiving rivers and soils. According to the concept of low impact development (LID), a pavement runoff pollution control measure was developed by using infiltration structure. In order to infiltration structure play a superior role in the control of pavement runoff pollution, purification capacity of four typical infiltration materials was tested. Then, long-term purification efficiency of infiltration materials was explored to suspended solids. Besides, microscopic observation was performed on infiltration materials. Results indicated that purification effects of infiltration materials were significantly different. The purification process can be divided into three stages, which ware "rapid upgrading ", "slow upgrading " and "slow reduction ". Finally, Infiltration materials mainly have two modes to intercept runoff pollutants, which were pore adsorption and mechanical interception of the gap between materials.


2015 ◽  
Vol 72 (10) ◽  
pp. 1747-1753 ◽  
Author(s):  
J. A. S. Tobio ◽  
M. C. Maniquiz-Redillas ◽  
L. H. Kim

The study presented the application of Stormwater Management Model (SWMM) in determining the optimal physical design properties of an established low impact development (LID) system treating road runoff. The calibration of the model was based on monitored storm events occurring from May 2010 to July 2013. It was found that the total suspended solids was highly correlated with stormwater runoff volume and dominant heavy metal constituents in stormwater runoff, such lead, zinc and copper, with a Pearson correlation coefficient ranging from 0.88 to 0.95 (P < 0.05). Reducing the original ratio of the storage volume to surface area (SV/SA) of the facility and depth by 25% could match the satisfactory performance efficiency achieved in the original design. The smaller SV/SA and depth would mean a less costly system, signifying the importance of optimization in designing LID systems.


2015 ◽  
Vol 86 ◽  
pp. 122-131 ◽  
Author(s):  
Sang-Soo Baek ◽  
Dong-Ho Choi ◽  
Jae-Woon Jung ◽  
Hyung-Jin Lee ◽  
Hyuk Lee ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document