Historical global land surface air apparent temperature and its future changes based on CMIP6 projections

Author(s):  
Jiaying Huang ◽  
Qingxiang Li ◽  
Zhaoyang Song
2021 ◽  
Author(s):  
Yuanfang chai ◽  
Wouter R. Berghuijs ◽  
Yao Yue ◽  
Thomas A.J. Janssen ◽  
Han Dolman

2021 ◽  
Author(s):  
Jonathan Barichivich ◽  
Philippe Peylin ◽  
Valérie Daux ◽  
Camille Risi ◽  
Jina Jeong ◽  
...  

<p>Gradual anthropogenic warming and parallel changes in the major global biogeochemical cycles are slowly pushing forest ecosystems into novel growing conditions, with uncertain consequences for ecosystem dynamics and climate. Short-term forest responses (i.e., years to a decade) to global change factors are relatively well understood and skilfully simulated by land surface models (LSMs). However, confidence on model projections weaken towards longer time scales and to the future, mainly because the long-term responses (i.e., decade to century) of these models remain unconstrained. This issue limits confidence on climate model projections. Annually-resolved tree-ring records, extending back to pre-industrial conditions, have the potential to constrain model responses at interannual to centennial time scales. Here, we constrain the representation of tree growth and physiology in the ORCHIDEE global land surface model using the simulated interannual variability of tree-ring width and carbon (Δ<sup>13</sup>C) and oxygen (δ<sup>18</sup>O) stable isotopes in six sites in boreal and temperate Europe.  The model simulates Δ<sup>13</sup>C (r = 0.31-0.80) and δ<sup>18</sup>O (r = 0.36-0.74) variability better than tree-ring width variability (r < 0.55), with an overall skill similar to that of other state-of-the-art models such as MAIDENiso and LPX-Bern. These results show that growth variability is not well represented, and that the parameterization of leaf-level physiological responses to drought stress in the temperate region can be improved with tree-ring data. The representation of carbon storage and remobilization dynamics is critical to improve the realism of simulated growth variability, temporal carrying over and recovery of forest ecosystems after climate extremes. The simulated physiological response to rising CO2 over the 20th century is consistent with tree-ring data in the temperate region, despite an overestimation of seasonal drought stress and stomatal control on photosynthesis. Photosynthesis correlates directly with isotopic variability, but correlations with δ<sup>18</sup>O combine physiological effects and climate variability impacts on source water signatures. The integration of tree-ring data (i.e. the triple constraint: width, Δ<sup>13</sup>C and δ<sup>18</sup>O) and land surface models as demonstrated here should contribute towards reducing current uncertainties in forest carbon and water cycling.</p>


Water ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 1884 ◽  
Author(s):  
Guojie Wang ◽  
Jian Pan ◽  
Chengcheng Shen ◽  
Shijie Li ◽  
Jiao Lu ◽  
...  

Evapotranspiration (ET), a critical process in global climate change, is very difficult to estimate at regional and basin scales. In this study, we evaluated five ET products: the Global Land Surface Evaporation with the Amsterdam Methodology (GLEAM, the EartH2Observe ensemble (E2O)), the Global Land Data Assimilation System with Noah Land Surface Model-2 (GLDAS), a global ET product at 8 km resolution from Zhang (ZHANG) and a supplemental land surface product of the Modern-ERA Retrospective analysis for Research and Applications (MERRA_land), using the water balance method in the Yellow River Basin, China, including twelve catchments, during the period of 1982–2000. The results showed that these ET products have obvious different performances, in terms of either their magnitude or temporal variations. From the viewpoint of multiple-year averages, the MERRA_land product shows a fairly similar magnitude to the ETw derived from the water balance method, while the E2O product shows significant underestimations. The GLEAM product shows the highest correlation coefficient. From the viewpoint of interannual variations, the ZHANG product performs best in terms of magnitude, while the E2O still shows significant underestimations. However, the E2O product best describes the interannual variations among the five ET products. Further study has indicated that the discrepancies between the ET products in the Yellow River Basin are mainly due to the quality of precipitation forcing data. In addition, most ET products seem to not be sensitive to the downward shortwave radiation.


Water ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1362 ◽  
Author(s):  
Mustafa Berk Duygu ◽  
Zuhal Akyürek

Soil moisture content is one of the most important parameters of hydrological studies. Cosmic-ray neutron sensing is a promising proximal soil moisture sensing technique at intermediate scale and high temporal resolution. In this study, we validate satellite soil moisture products for the period of March 2015 and December 2018 by using several existing Cosmic Ray Neutron Probe (CRNP) stations of the COSMOS database and a CRNP station that was installed in the south part of Turkey in October 2016. Soil moisture values, which were inferred from the CRNP station in Turkey, are also validated using a time domain reflectometer (TDR) installed at the same location and soil water content values obtained from a land surface model (Noah LSM) at various depths (0.1 m, 0.3 m, 0.6 m and 1.0 m). The CRNP has a very good correlation with TDR where both measurements show consistent changes in soil moisture due to storm events. Satellite soil moisture products obtained from the Soil Moisture and Ocean Salinity (SMOS), the METOP-A/B Advanced Scatterometer (ASCAT), Soil Moisture Active Passive (SMAP), Advanced Microwave Scanning Radiometer 2 (AMSR2), Climate Change Initiative (CCI) and a global land surface model Global Land Data Assimilation System (GLDAS) are compared with the soil moisture values obtained from CRNP stations. Coefficient of determination ( r 2 ) and unbiased root mean square error (ubRMSE) are used as the statistical measures. Triple Collocation (TC) was also performed by considering soil moisture values obtained from different soil moisture products and the CRNPs. The validation results are mainly influenced by the location of the sensor and the soil moisture retrieval algorithm of satellite products. The SMAP surface product produces the highest correlations and lowest errors especially in semi-arid areas whereas the ASCAT product provides better results in vegetated areas. Both global and local land surface models’ outputs are highly compatible with the CRNP soil moisture values.


2017 ◽  
Author(s):  
Clément Albergel ◽  
Simon Munier ◽  
Delphine Jennifer Leroux ◽  
Hélène Dewaele ◽  
David Fairbairn ◽  
...  

Abstract. In this study, a global Land Data Assimilation system (LDAS-Monde) is tested over Europe and the Mediterranean basin to increase monitoring accuracy for land surface variables. LDAS-Monde is able to ingest information from satellite-derived surface Soil Moisture (SM) and Leaf Area Index (LAI) observations to constrain the Interactions between Soil, Biosphere, and Atmosphere (ISBA) land surface model (LSM) coupled with the CNRM (Centre National de Recherches Météorologiques) version of the Total Runoff Integrating Pathways (ISBA-CTRIP) continental hydrological system. It makes use of the CO2-responsive version of ISBA which models leaf-scale physiological processes and plant growth. Transfer of water and heat in the soil rely on a multilayer diffusion scheme. Surface SM and LAI observations are assimilated using a simplified extended Kalman filter (SEKF), which uses finite differences from perturbed simulations to generate flow-dependence between the observations and the model control variables. The latter include LAI and seven layers of soil (from 1 cm to 100 cm depth). A sensitivity test of the Jacobians over 2000–2012 exhibits effects related to both depth and season. It also suggests that observations of both LAI and surface SM have an impact on the different control variables. From the assimilation of surface SM, the LDAS is more effective in modifying soil-moisture from the top layers of soil as model sensitivity to surface SM decreases with depth and has almost no impact from 60 cm downwards. From the assimilation of LAI, a strong impact on LAI itself is found. The LAI assimilation impact is more pronounced in SM layers that contain the highest fraction of roots (from 10 cm to 60 cm). The assimilation is more efficient in summer and autumn than in winter and spring. Assimilation impact shows that the LDAS works well constraining the model to the observations and that stronger corrections are applied to LAI than to SM. The assimilation impact's evaluation is successfully carried out using (i) agricultural statistics over France, (ii) river discharge observations, (iii) satellite-derived estimates of land evapotranspiration from the Global Land Evaporation Amsterdam Model (GLEAM) project and (iv) spatially gridded observations based estimates of up-scaled gross primary production and evapotranspiration from the FLUXNET network. Comparisons with those four datasets highlight neutral to highly positive improvement.


Sign in / Sign up

Export Citation Format

Share Document