Molecular dynamics study of self-diffusion in the core of a screw dislocation in face centered cubic crystals

2017 ◽  
Vol 133 ◽  
pp. 101-104 ◽  
Author(s):  
Siavash Soltani ◽  
Niaz Abdolrahim ◽  
Panthea Sepehrband
2007 ◽  
Vol 22 (10) ◽  
pp. 2758-2769 ◽  
Author(s):  
Hyon-Jee Lee ◽  
Jae-Hyeok Shim ◽  
Brian D. Wirth

The interaction of a gliding screw dislocation with stacking fault tetrahedron (SFT) in face-centered cubic (fcc) copper (Cu) was studied using molecular dynamics simulations. Upon intersection, the screw dislocation spontaneously cross slips on the SFT face. One of the cross-slipped Shockley partials glides toward the SFT base, partially absorbing the SFT. At low applied stress, partial absorption produces a superjog, with detachment of the trailing Shockley partial via an Orowan process. This leaves a small perfect SFT and a truncated base behind, which subsequently form a sheared SFT with a pair of opposite sense ledges. At higher applied shear stress, the ledges can self-heal by gliding toward an SFT apex and transform the sheared SFT into a perfect SFT. However, complete absorption or collapse of an SFT (or sheared SFT) by a moving screw dislocation is not observed. These observations provide insights into defect-free channel formation in deformed irradiated Cu.


2008 ◽  
Vol 32 ◽  
pp. 255-258
Author(s):  
Bohayra Mortazavi ◽  
Akbar Afaghi Khatibi

Molecular Dynamics (MD) are now having orthodox means for simulation of matter in nano-scale. It can be regarded as an accurate alternative for experimental work in nano-science. In this paper, Molecular Dynamics simulation of uniaxial tension of some face centered cubic (FCC) metals (namely Au, Ag, Cu and Ni) at nano-level have been carried out. Sutton-Chen potential functions and velocity Verlet formulation of Noise-Hoover dynamic as well as periodic boundary conditions were applied. MD simulations at different loading rates and temperatures were conducted, and it was concluded that by increasing the temperature, maximum engineering stress decreases while engineering strain at failure is increasing. On the other hand, by increasing the loading rate both maximum engineering stress and strain at failure are increasing.


1998 ◽  
Vol 539 ◽  
Author(s):  
J. Belak ◽  
R. Minich

AbstractThe dynamic fracture (spallation) of ductile metals is known to initiate through the nucleation and growth of microscopic voids. Here, we apply atomistic molecular dynamics modeling to the early growth of nanoscale (2nm radius) voids in face centered cubic metals using embedded atom potential models. The voids grow through anisotropic dislocation nucleation and emission into a cuboidal shape in agreement with experiment. The mechanism of this nucleation process is presented. The resulting viscous growth exponent at late times is about three times larger than expected from experiment for microscale voids, suggesting either a length scale dependence or a inadequacy of the molecular dynamics model such as the perfect crystal surrounding the void.


2009 ◽  
Vol 1224 ◽  
Author(s):  
Sebastián Echeverri Restrepo ◽  
Barend J. Thijsse

AbstractIn order to perform a systematic study of the interaction between grain boundaries (GBs) and dislocations using molecular dynamics (MD), several tools need to be available. A combination of computational geometry and MD was used to build the foundations of what we call a virtual laboratory. First, an algorithm to generate GBs on face-centered cubic bicrystals was developed. Two crystals with different orientations are placed together. Then, by applying “microscopic” rigid body translations along the GB plane to one of the crystals and removing overlapping atoms, a set of initial configurations is sampled and a minimum energy configuration is found. Second, to classify the geometry of the GBs a local symmetry type (LST) describing the angular environment of each atom is calculated. It is found that for a given relaxed GB the number of atoms with different LSTs is not very large and that it is possible to find unique geometrical patterns in each GB. For instance, the LSTs of two GBs having the same “macroscopic” configuration but different “microscopic” degrees of freedom can be dissimilar: the configurations with higher GB energy tend to have a higher number of atoms with different LSTs. Third, edge dislocations are introduced into the bicrystals. We see that full edge dislocations split into Shockley partials. Finally, by loading the bicrystals with tensile stresses the edge dislocations are put into motion. Various examples of dislocation-GB interactions in Cu are presented.


2006 ◽  
Vol 89 (18) ◽  
pp. 181907 ◽  
Author(s):  
Hadrian Djohari ◽  
Frederick Milstein ◽  
Dimitrios Maroudas

Sign in / Sign up

Export Citation Format

Share Document