Towards a Virtual Laboratory for Grain Boundaries and Dislocations

2009 ◽  
Vol 1224 ◽  
Author(s):  
Sebastián Echeverri Restrepo ◽  
Barend J. Thijsse

AbstractIn order to perform a systematic study of the interaction between grain boundaries (GBs) and dislocations using molecular dynamics (MD), several tools need to be available. A combination of computational geometry and MD was used to build the foundations of what we call a virtual laboratory. First, an algorithm to generate GBs on face-centered cubic bicrystals was developed. Two crystals with different orientations are placed together. Then, by applying “microscopic” rigid body translations along the GB plane to one of the crystals and removing overlapping atoms, a set of initial configurations is sampled and a minimum energy configuration is found. Second, to classify the geometry of the GBs a local symmetry type (LST) describing the angular environment of each atom is calculated. It is found that for a given relaxed GB the number of atoms with different LSTs is not very large and that it is possible to find unique geometrical patterns in each GB. For instance, the LSTs of two GBs having the same “macroscopic” configuration but different “microscopic” degrees of freedom can be dissimilar: the configurations with higher GB energy tend to have a higher number of atoms with different LSTs. Third, edge dislocations are introduced into the bicrystals. We see that full edge dislocations split into Shockley partials. Finally, by loading the bicrystals with tensile stresses the edge dislocations are put into motion. Various examples of dislocation-GB interactions in Cu are presented.

2009 ◽  
Vol 633-634 ◽  
pp. 31-38
Author(s):  
Ajing Cao

We have previously reported that the fracture behavior of nanocrystalline (NC) Ni is via the nucleation and coalescence of nano-voids at grain boundaries and triple junctions, resulting in intergranular failure mode. Here we show in large-scale molecular dynamics simulations that partial-dislocation-mediated plasticity is dominant in NC Cu with grain size as small as ~ 10 nanometers. The simulated results show that NC Cu can accommodate large plastic strains without cracking or creating damage in the grain interior or grain boundaries, revealing their intrinsic ductile properties compared with NC Ni. These results point out different failure mechanisms of the two face-centered-cubic (FCC) metals subject to uniaxial tensile loading. The insight gained in the computational experiments could explain the good plasticity found in NC Cu not seen in Ni so far.


2008 ◽  
Vol 32 ◽  
pp. 255-258
Author(s):  
Bohayra Mortazavi ◽  
Akbar Afaghi Khatibi

Molecular Dynamics (MD) are now having orthodox means for simulation of matter in nano-scale. It can be regarded as an accurate alternative for experimental work in nano-science. In this paper, Molecular Dynamics simulation of uniaxial tension of some face centered cubic (FCC) metals (namely Au, Ag, Cu and Ni) at nano-level have been carried out. Sutton-Chen potential functions and velocity Verlet formulation of Noise-Hoover dynamic as well as periodic boundary conditions were applied. MD simulations at different loading rates and temperatures were conducted, and it was concluded that by increasing the temperature, maximum engineering stress decreases while engineering strain at failure is increasing. On the other hand, by increasing the loading rate both maximum engineering stress and strain at failure are increasing.


2013 ◽  
Vol 58 (1) ◽  
pp. 145-150 ◽  
Author(s):  
H. Paul ◽  
P. Uliasz ◽  
M. Miszczyk ◽  
W. Skuza ◽  
T. Knych

The crystal lattice rotations induced by shear bands formation have been examined in order to investigate the influence of grain boundaries on slip propagation and the resulting texture evolution. The issue was analysed on Al-0.23wt.%Zr alloy as a representative of face centered cubic metals with medium-to-high stacking fault energy. After solidification, the microstructure of the alloy was composed of flat, twin-oriented, large grains. The samples were cut-off from the as-cast ingot in such a way that the twinning planes were situated almost parallel to the compression plane. The samples were then deformed at 77K in channel-die up to strains of 0.69. To correlate the substructure with the slip patterns, the deformed specimens were examined by SEM equipped with a field emission gun and electron backscattered diffraction facilities. Microtexture measurements showed that strictly defined crystal lattice re-orientations occurred in the sample volumes situated within the area of the broad macroscopic shear bands (MSB), although the grains initially had quite different crystallographic orientations. Independently of the grain orientation, their crystal lattice rotated in such a way that one of the f111g slip planes became nearly parallel to the plane of maximum shear. This facilitates the slip propagation across the grain boundaries along the shear direction without any visible variation in the slip plane. A natural consequence of this rotation is the formation of specific MSB microtextures which facilitates slip propagation across grain boundaries.


Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7199
Author(s):  
Hyunbin Nam ◽  
Jeongwon Kim ◽  
Namkyu Kim ◽  
Sangwoo Song ◽  
Youngsang Na ◽  
...  

In this study, the carburization characteristics of cast and cold-rolled CoCrFeMnNi high-entropy alloys (HEAs) with various grain sizes were investigated. All specimens were prepared by vacuum carburization at 940 °C for 8 h. The carburized/diffused layer was mainly composed of face-centered cubic structures and Cr7C3 carbide precipitates. The carburized/diffused layer of the cold-rolled specimen with a fine grain size (~1 μm) was thicker (~400 μm) than that of the carburized cast specimen (~200 μm) with a coarse grain size (~1.1 mm). In all specimens, the carbides were formed primarily through grain boundaries, and their distribution varied with the grain sizes of the specimens. However, the carbide precipitates of the cast specimen were formed primarily at the grain boundaries and were unequally distributed in the specific grains. Owing to the non-uniform formation of carbides in the carburized cast specimen, the areas in the diffused layer exhibited various carbide densities and hardness distributions. Therefore, to improve the carburization efficiency of equiatomic CoCrFeMnNi HEAs, it is necessary to refine the grain sizes.


1994 ◽  
Vol 356 ◽  
Author(s):  
N. Tajima ◽  
T. Nozaki ◽  
T. Hirade ◽  
Y. Kogure ◽  
Masao Doyama

AbstractComplete and dissociated edge dislocations were created near the center of the surface (101) of aluminum small crystals whose surfaces are (111), (111), (101), (101). (121) and (121). Molecular dynamics with N-body embedded atom potentials were used. Higher stress is needed to create a complete edge dislocation than to create a dissociated dislocation.


Crystals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1008
Author(s):  
Pablo Miguel Ramos ◽  
Miguel Herranz ◽  
Katerina Foteinopoulou ◽  
Nikos Ch. Karayiannis ◽  
Manuel Laso

In the present work, we revise and extend the Characteristic Crystallographic Element (CCE) norm, an algorithm used to simultaneously detect radial and orientational similarity of computer-generated structures with respect to specific reference crystals and local symmetries. Based on the identification of point group symmetry elements, the CCE descriptor is able to gauge local structure with high precision and finely distinguish between competing morphologies. As test cases we use computer-generated monomeric and polymer systems of spherical particles interacting with the hard-sphere and square-well attractive potentials. We demonstrate that the CCE norm is able to detect and differentiate, between others, among: hexagonal close packed (HCP), face centered cubic (FCC), hexagonal (HEX) and body centered cubic (BCC) crystals as well as non-crystallographic fivefold (FIV) local symmetry in bulk 3-D systems; triangular (TRI), square (SQU) and honeycomb (HON) crystals, as well as pentagonal (PEN) local symmetry in thin films of one-layer thickness (2-D systems). The descriptor is general and can be applied to identify the symmetry elements of any point group for arbitrary atomic or particulate system in two or three dimensions, in the bulk or under confinement.


1998 ◽  
Vol 539 ◽  
Author(s):  
J. Belak ◽  
R. Minich

AbstractThe dynamic fracture (spallation) of ductile metals is known to initiate through the nucleation and growth of microscopic voids. Here, we apply atomistic molecular dynamics modeling to the early growth of nanoscale (2nm radius) voids in face centered cubic metals using embedded atom potential models. The voids grow through anisotropic dislocation nucleation and emission into a cuboidal shape in agreement with experiment. The mechanism of this nucleation process is presented. The resulting viscous growth exponent at late times is about three times larger than expected from experiment for microscale voids, suggesting either a length scale dependence or a inadequacy of the molecular dynamics model such as the perfect crystal surrounding the void.


2007 ◽  
Vol 121-123 ◽  
pp. 1053-1056
Author(s):  
Guo Rong Zhong ◽  
Qiu Ming Gao

Molecular dynamics simulation of the solidification behavior of liquid nickel nanowires has been carried out based on the embedded atom potential with different cooling rates. The nanowires constructed with a face-centered cubic structure and a one-dimensional (1D) periodical boundary condition along the wire axis direction. It is found that the final structure of Ni nanowires strongly depend on the cooling rates during solidification from liquid. With decreasing cooling rates the final structure of the nanowires varies from amorphous to crystalline via helical multi-shelled structure.


Sign in / Sign up

Export Citation Format

Share Document