On the effect of the operating parameters for two-phase olive-oil washing wastewater combined phenolic compounds recovery and reclamation by novel ion exchange resins

2018 ◽  
Vol 195 ◽  
pp. 50-59 ◽  
Author(s):  
Javier M. Ochando-Pulido ◽  
Rubén González-Hernández ◽  
Antonio Martinez-Ferez
2016 ◽  
Vol 2016 ◽  
pp. 1-13 ◽  
Author(s):  
Davide Pinelli ◽  
Aurora Esther Molina Bacca ◽  
Ankita Kaushik ◽  
Subhankar Basu ◽  
Massimo Nocentini ◽  
...  

The goals of this work were (i) to compare two anion ion exchange resins (IRA958 Cl and IRA67) and a nonionic resin (XAD16) in terms of phenolic compounds adsorption capacity from olive mill wastewater and (ii) to compare the adsorption capacity of the best resin on columns of different length. The ion exchange resins performed worse than nonionic XAD16 in terms of resin utilization efficiency (20% versus 43%) and phenolic compounds/COD enrichment factor (1.0 versus 2.5). The addition of volatile fatty acids did not hinder phenolic compounds adsorption on either resin, suggesting a noncompetitive adsorption mechanism. A pH increase from 4.9 to 7.2 did not affect the result of this comparison. For the best performing resin (XAD16), an increase in column length from 0.5 to 1.8 m determined an increase in resin utilization efficiency (from 12% to 43%), resin productivity (from 3.4 to 7.6 gsorbed  phenolics/kgresin), and phenolics/COD enrichment factor (from 1.2 to 2.5). An axial dispersion model with nonequilibrium adsorption accurately interpreted the phenolic compounds and COD experimental curves.


2017 ◽  
Vol 68 (3) ◽  
pp. 208 ◽  
Author(s):  
S. Jiménez-Herrera ◽  
J. M. Ochando-Pulido ◽  
A. Martínez-Ferez

Phenolic compounds from olive mill wastewater (OMW), are characterized by a strong antioxidant activity. At the same time, they represent an environmental problem because they are difficult to degrade. The purpose of this work was to identify these biologically active compounds in the OMW from two-phase olive oil production in order to convert a polluting residue into a source of natural antioxidants. After optimizing the extraction process of phenolic compounds using liquid-liquid extraction (LLE) and solid phase extraction (SPE) methods, it was determined that the most appropriate sequence comprised a previous centrifugation to remove the lipid fraction, followed by liquid extraction with ethyl acetate or SPE. The most important compounds identified in olive oil washing wastewater (OOWW) were tyrosol, hydroxytyrosol and succinic acid; whereas the ones in the wastewater derived from the washing of the olives (OWW) were cresol, catechol, 4-methylcatechol, hydrocinnamic acid and p-hydroxy-hydrocinnamic acid.


Author(s):  
Ann M. Thomas ◽  
Virginia Shemeley

Those samples which swell rapidly when exposed to water are, at best, difficult to section for transmission electron microscopy. Some materials literally burst out of the embedding block with the first pass by the knife, and even the most rapid cutting cycle produces sections of limited value. Many ion exchange resins swell in water; some undergo irreversible structural changes when dried. We developed our embedding procedure to handle this type of sample, but it should be applicable to many materials that present similar sectioning difficulties.The purpose of our embedding procedure is to build up a cross-linking network throughout the sample, while it is in a water swollen state. Our procedure was suggested to us by the work of Rosenberg, where he mentioned the formation of a tridimensional structure by the polymerization of the GMA biproduct, triglycol dimethacrylate.


Author(s):  
Kathpalia Harsha ◽  
Das Sukanya

Ion Exchange Resins (IER) are insoluble polymers having styrene divinylbenzene copolymer backbone that contain acidic or basic functional groups and have the ability to exchange counter ions with the surrounding aqueous solutions. From the past many years they have been widely used for purification and softening of water and in chromatographic columns, however recently their use in pharmaceutical industry has gained considerable importance. Due to the physical stability and inert nature of the resins, they can be used as a versatile vehicle to design several modified release dosage forms The ionizable drug is complexed with the resin owing to the property of ion exchange. This resin complex dissociatesin vivo to release the drug. Based on the dissociation strength of the drug from the drug resin complex, various release patterns can be achieved. Many formulation glitches can be circumvented using ion exchange resins such as bitter taste and deliquescence. These resins also aid in enhancing disintegrationand stability of formulation. This review focuses on different types of ion exchange resins, their preparation methods, chemistry, properties, incompatibilities and their application in various oral drug delivery systems as well as highlighting their use as therapeutic agents.


2004 ◽  
Vol 3 (3) ◽  
pp. 447-455
Author(s):  
Viky Dicu ◽  
Carmen Iesan ◽  
Mihai Chirica ◽  
Satish Bapat

2014 ◽  
Vol 13 (9) ◽  
pp. 2145-2152 ◽  
Author(s):  
Liliana Lazar ◽  
Laura Bulgariu ◽  
Bogdan Bandrabur ◽  
Ramona-Elena Tataru-Farmus ◽  
Mioara Drobota ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document