Purification of uranium-contaminated radioactive water by adsorption: A review on adsorbent materials

2022 ◽  
Vol 278 ◽  
pp. 119675
Author(s):  
Byung-Moon Jun ◽  
Hyun-Kyu Lee ◽  
Sungbin Park ◽  
Tack-Jin Kim
Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3655
Author(s):  
Daniele C. da Silva Alves ◽  
Bronach Healy ◽  
Tian Yu ◽  
Carmel B. Breslin

Graphene and its derivatives, especially graphene oxide (GO), are attracting considerable interest in the fabrication of new adsorbents that have the potential to remove various pollutants that have escaped into the aquatic environment. Herein, the development of GO/chitosan (GO/CS) composites as adsorbent materials is described and reviewed. This combination is interesting as the addition of graphene to chitosan enhances its mechanical properties, while the chitosan hydrogel serves as an immobilization matrix for graphene. Following a brief description of both graphene and chitosan as independent adsorbent materials, the emerging GO/CS composites are introduced. The additional materials that have been added to the GO/CS composites, including magnetic iron oxides, chelating agents, cyclodextrins, additional adsorbents and polymeric blends, are then described and discussed. The performance of these materials in the removal of heavy metal ions, dyes and other organic molecules are discussed followed by the introduction of strategies employed in the regeneration of the GO/CS adsorbents. It is clear that, while some challenges exist, including cost, regeneration and selectivity in the adsorption process, the GO/CS composites are emerging as promising adsorbent materials.


2021 ◽  
pp. 100150
Author(s):  
Kasidit Janbooranapinij ◽  
Arinchai Yimponpipatpol ◽  
Narueporn Ngamthanacom ◽  
Gasidit Panomsuwan

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Keamogetswe Ramonaheng ◽  
Johannes A. van Staden ◽  
Hanlie du Raan

Abstract Background Different gamma camera calibration factor (CF) geometries have been proposed to convert SPECT data into units of activity concentration. However, no consensus has been reached on a standardised geometry. The CF is dependent on the selected geometry and is further affected by partial volume effects. This study investigated the effect of two CF geometries and their corresponding recovery coefficients (RCs) on the quantification accuracy of 177Lu SPECT images using Monte Carlo simulations. Methods The CF geometries investigated were (i) a radioactive-sphere surrounded by non-radioactive water (sphere-CF) and (ii) a cylindrical phantom uniformly filled with radioactive water (cylinder-CF). Recovery coefficients were obtained using the sphere-CF and cylinder-CF, yielding the sphere-RC and cylinder-RC values, respectively, for partial volume correction (PVC). The quantification accuracy was evaluated using four different-sized spheres (15.6–65.4 ml) and a kidney model with known activity concentrations inside a cylindrical, torso and patient phantom. Images were reconstructed with the 3D OS-EM algorithm incorporating attenuation, scatter and detector-response corrections. Segmentation was performed using the physical size and a small cylindrical volume inside the cylinder for the sphere-CF and cylinder-CF, respectively. Results The sphere quantification error (without PVC) was better for the sphere-CF (≤ − 5.54%) compared to the cylinder-CF (≤ − 20.90%), attributed to the similar geometry of the quantified and CF spheres. Partial volume correction yielded comparable results for the sphere-CF-RC (≤ 3.47%) and cylinder-CF-RC (≤ 3.53%). The accuracy of the kidney quantification was poorer (≤ 22.34%) for the sphere-CF without PVC compared to the cylinder-CF (≤ 2.44%). With PVC, the kidney quantification results improved and compared well for the sphere-CF-RC (≤ 3.50%) and the cylinder-CF-RC (≤ 3.45%). Conclusion The study demonstrated that upon careful selection of CF-RC combinations, comparable quantification errors (≤ 3.53%) were obtained between the sphere-CF-RC and cylinder-CF-RC, when all corrections were applied.


2020 ◽  
Vol 1701 ◽  
pp. 012011
Author(s):  
A A Artamonova ◽  
D A Baldov ◽  
O A Mirzeabasov ◽  
M M Rasskazova ◽  
B I Synzynys ◽  
...  

2021 ◽  
Vol 299 ◽  
pp. 113652
Author(s):  
Ameera F. Mohammad ◽  
Aya A-H.I. Mourad ◽  
Emmanuel Galiwango ◽  
Essa G. Lwisa ◽  
Ali H. Al-Marzouqi ◽  
...  

2021 ◽  
Vol 167 ◽  
pp. 113510
Author(s):  
Paola Santander ◽  
Bryan Butter ◽  
Estefanía Oyarce ◽  
Mauricio Yáñez ◽  
Ling-Ping Xiao ◽  
...  

2003 ◽  
Vol 21 (5) ◽  
pp. 439-449 ◽  
Author(s):  
Yoshiaki Shimizu ◽  
Atsushi Taga ◽  
Hitoshi Yamaoka

Novel chitosan-based adsorbent materials with a higher fatty diacid diglycidyl as the crosslinking agent were synthesized and the adsorption abilities of the resulting polymers evaluated towards typical acid dyes. The successful formation of a crosslinked structure was confirmed via infrared spectroscopic measurements and the solubility of the polymer towards 10% aqueous solutions of acetic and formic acids determined. At higher dye concentrations, the adsorption abilities of the crosslinked chitosan towards hydrophilic CI Acid Orange 7 and CI Acid Red 1 increased with decreasing degree of substitution. However, at lower dye concentrations, the crosslinked chitosan with the lowest degree of substitution exhibited the lowest adsorption capability. With such hydrophilic acid dyes, the extent of adsorption decreased significantly as the pH of the solution increased. On the other hand, CI Acid Red 138, which contains a dodecyl group in the chemical structure, was adsorbed to a considerable extent even at higher pH values, suggesting hydrophobic interaction between the alkyl group in the dye molecule and the hydrophobic crosslinker.


Sign in / Sign up

Export Citation Format

Share Document