Enhanced removal efficiency towards azole fungicides from environmental water using a metal organic framework functionalized magnetic lignosulfonate

2021 ◽  
Vol 279 ◽  
pp. 119785
Author(s):  
Zhi-Heng Lu ◽  
Dai-Zhu Lv ◽  
Dong-Dong Zhou ◽  
Zhong-Hua Yang ◽  
Ming-Yue Wang ◽  
...  
Molecules ◽  
2019 ◽  
Vol 24 (10) ◽  
pp. 1887 ◽  
Author(s):  
Thuan Van Tran ◽  
Duyen Thi Cam Nguyen ◽  
Hanh T. N. Le ◽  
Long Giang Bach ◽  
Dai-Viet N. Vo ◽  
...  

In this study, a minimum-run resolution IV and central composite design have been developed to optimize tetracycline removal efficiency over mesoporous carbon derived from the metal-organic framework MIL-53 (Fe) as a self-sacrificial template. Firstly, minimum-run resolution IV, powered by the Design–Expert program, was used as an efficient and reliable screening study for investigating a set of seven factors, these were: tetracycline concentration (A: 5–15 mg/g), dose of mesoporous carbons (MPC) (B: 0.05–0.15 g/L), initial pH level (C: 2–10), contact time (D: 1–3 h), temperature (E: 20–40 °C), shaking speed (F: 150–250 rpm), and Na+ ionic strength (G: 10–90 mM) at both low (−1) and high (+1) levels, for investigation of the data ranges. The 20-trial model was analyzed and assessed by Analysis of Variance (ANOVA) data, and diagnostic plots (e.g., the Pareto chart, and half-normal and normal probability plots). Based on minimum-run resolution IV, three factors, including tetracycline concentration (A), dose of MPC (B), and initial pH (C), were selected to carry out the optimization study using a central composite design. The proposed quadratic model was found to be statistically significant at the 95% confidence level due to a low P-value (<0.05), high R2 (0.9078), and the AP ratio (11.4), along with an abundance of diagnostic plots (3D response surfaces, Cook’s distance, Box-Cox, DFFITS, Leverage versus run, residuals versus runs, and actual versus predicted). Under response surface methodology-optimized conditions (e.g., tetracycline concentration of 1.9 mg/g, MPC dose of 0.15 g/L, and pH level of 3.9), the highest tetracycline removal efficiency via confirmation tests reached up to 98.0%–99.7%. Also, kinetic intraparticle diffusion and isotherm models were systematically studied to interpret how tetracycline molecules were absorbed on an MPC structure. In particular, the adsorption mechanisms including “electrostatic attraction” and “π–π interaction” were proposed.


2020 ◽  
Vol 49 (13) ◽  
pp. 4060-4066
Author(s):  
Xiang-Guang Guo ◽  
Jia Su ◽  
Wen-Qi Xie ◽  
Shuai-Nan Ni ◽  
Yun Gao ◽  
...  

New MOF adsorbent with functional N+–O− groups was designed. The material shows fast adsorption of Th(iv) and high removal efficiency, and is selective over La(iii), Sm(iii), Ho(iii), Cd(ii), Pb(ii) and K(i) ions.


2018 ◽  
Vol 6 (38) ◽  
pp. 18438-18443 ◽  
Author(s):  
Sameh K. Elsaidi ◽  
Michael A. Sinnwell ◽  
Arun Devaraj ◽  
Tim C. Droubay ◽  
Zimin Nie ◽  
...  

Magnetic core–shell microspheres were developed to extract rare earth elements (REEs) from aqueous and brine solutions with up to 99.99% removal efficiency. The shell, composed of a thermally and chemically stable functionalized metal–organic framework (MOF), is grown over a synthesized Fe3O4 magnetic core (magnetite@MOF).


Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 579
Author(s):  
Paweł Kościelniak ◽  
Marek Dębosz ◽  
Marcin Wieczorek ◽  
Jan Migdalski ◽  
Monika Szufla ◽  
...  

A solid-contact ion-selective electrode was developed for detecting potassium in environmental water. Two versions of a stable cadmium acylhydrazone-based metal organic framework, i.e., JUK-13 and JUK-13_H2O, were used for the construction of the mediation layer. The potentiometric and electrochemical characterizations of the proposed electrodes were carried out. The implementation of the JUK-13_H2O interlayer is shown to improve the potentiometric response and stability of measured potential. The electrode exhibits a good Nernstian slope (56.30 mV/decade) in the concentration range from 10−5 to 10−1 mol L−1 with a detection limit of 2.1 µmol L−1. The long-term potential stability shows a small drift of 0.32 mV h−1 over 67 h. The electrode displays a good selectivity comparable to ion-selective electrodes with the same membrane. The K-JUK-13_H2O-ISE was successfully applied for the determination of potassium in three certified reference materials of environmental water with great precision (RSD < 3.00%) and accuracy (RE < 3.00%).


Sign in / Sign up

Export Citation Format

Share Document