Activation of persulfate using CuS synthesized by ultrafast solid-state reaction for removal of organic pollutants from wastewater: Economical synthesis, catalytic performance, and mechanism

2022 ◽  
Vol 284 ◽  
pp. 120238
Author(s):  
Ahmed B. Azzam ◽  
Alaa O. Abd El-Aziz ◽  
Sahar K. Mohamed
RSC Advances ◽  
2015 ◽  
Vol 5 (31) ◽  
pp. 24313-24318 ◽  
Author(s):  
Shahin Khademinia ◽  
Mahdi Behzad ◽  
Hamideh Samari Jahromi

Bi2V2O7 nano powders were synthesized via a solid state reaction at 500 °C for 8 h using Bi(NO3)3 and VO(acac)2 at stoichiometric 1 : 1 Bi : V molar ratio as raw materials.


2011 ◽  
Vol 393-395 ◽  
pp. 1235-1241
Author(s):  
Liu Hong ◽  
Wu Bin ◽  
Feng Cheng Tao ◽  
Qin Xia

Nano-Nickel (Ni0) powders have been successfully prepared via the reduction of nanosized NiO powders by the solid state reaction. And the nanosized NiO powders were derived from low temperature (350°C) calcinations in muffle in air of nanosized Ni(OH)2 powders firstly prepared by the room temperature solid state reaction between NiSO4•6H2O and NaOH by H2 at 400°C for 4 h. The crystallinity, microstructure of surface and xps property of obtained nickel powders were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). Furthermore, the catalytic activity of the obtained nanosized Ni powders for hydrogenation of nitrobenzene to aniline was investigated. The results show that the spherical Ni parepared in particle sizes ranges from 20 to 25 nm and achieves enhanced catalytic activity for hydrogenation of nitrobenzene to aniline compared with Raney Ni.


2018 ◽  
Vol 29 (20) ◽  
pp. 17463-17472 ◽  
Author(s):  
Taoyu Qiu ◽  
Shaoyou Liu ◽  
Huidong Cai ◽  
Yan Zhou ◽  
Kao Chen ◽  
...  

2020 ◽  
Vol 22 (45) ◽  
pp. 26278-26288
Author(s):  
Yanzhong Zhen ◽  
Chunming Yang ◽  
Huidong Shen ◽  
Wenwen Xue ◽  
Chunrong Gu ◽  
...  

Photocatalysis with sustainable utilization and low cost is an environmentally benign method for the degradation of organic pollutants, but the rational design and fabrication of photocatalysts with high catalytic performance is still an challenge.


Author(s):  
S.R. Summerfelt ◽  
C.B. Carter

The wustite-spinel interface can be viewed as a model interface because the wustite and spinel can share a common f.c.c. oxygen sublattice such that only the cations distribution changes on crossing the interface. In this study, the interface has been formed by a solid state reaction involving either external or internal oxidation. In systems with very small lattice misfit, very large particles (>lμm) with coherent interfaces have been observed. Previously, the wustite-spinel interface had been observed to facet on {111} planes for MgFe2C4 and along {100} planes for MgAl2C4 and MgCr2O4, the spinel then grows preferentially in the <001> direction. Reasons for these experimental observations have been discussed by Henriksen and Kingery by considering the strain energy. The point-defect chemistry of such solid state reactions has been examined by Schmalzried. Although MgO has been the principal matrix material examined, others such as NiO have also been studied.


Author(s):  
J. R. Heffelfinger ◽  
C. B. Carter

Transmission-electron microscopy (TEM), scanning-electron microscopy (SEM) and energy-dispersive x-ray spectroscopy (EDS) were used to investigate the solid-state reaction between a thin yttria film and a (0001) α-alumina substrate. Systems containing Y2O3 (yttria) and Al2O3 (alumina) are seen in many technologically relevant applications. For example, yttria is being explored as a coating material for alumina fibers for metal-ceramic composites. The coating serves as a diffusion barrier and protects the alumina fiber from reacting with the metal matrix. With sufficient time and temperature, yttria in contact with alumina will react to form one or a combination of phases shown by the phase diagram in Figure l. Of the reaction phases, yttrium aluminum garnet (YAG) is used as a material for lasers and other optical applications. In a different application, YAG is formed as a secondary phase in the sintering of AIN. Yttria is added to AIN as a sintering aid and acts as an oxygen getter by reacting with the alumina in AIN to form YAG.


1990 ◽  
Vol 51 (C4) ◽  
pp. C4-111-C4-117 ◽  
Author(s):  
L. J. GALLEGO ◽  
J. A. SOMOZA ◽  
H. M. FERNANDEZ ◽  
J. A. ALONSO

2013 ◽  
Vol 12 (10) ◽  
pp. 719-726
Author(s):  
R. Ayadi ◽  
Mohamed Boujelbene ◽  
T. Mhiri

The present paper is interested in the study of compounds from the apatite family with the general formula Ca10 (PO4)6A2. It particularly brings to light the exploitation of the distinctive stereochemistries of two Ca positions in apatite. In fact, Gd-Bearing oxyapatiteCa8 Gd2 (PO4)6O2 has been synthesized by solid state reaction and characterized by X-ray powder diffraction. The site occupancies of substituents is0.3333 in Gd and 0.3333 for Ca in the Ca(1) position and 0. 5 for Gd in the Ca (2) position.  Besides, the observed frequencies in the Raman and infrared spectra were explained and discussed on the basis of unit-cell group analyses.


Sign in / Sign up

Export Citation Format

Share Document