Research on the conversion efficiency and preparation technology of monocrystalline silicon cells based on statistical distribution

2021 ◽  
Vol 47 ◽  
pp. 101482
Author(s):  
Jie Sun ◽  
Yan Zuo ◽  
Runguang Sun ◽  
Lang Zhou
2014 ◽  
Vol 488-489 ◽  
pp. 44-47
Author(s):  
Hao Hua Li ◽  
You Hua Wang ◽  
Dun Yu Zhu

Solar energy is the inexhaustible,enewable Energy. The solar cell is the solar light energy into electricity. The unique advantages of solar cell. Potential, more than wind, hydro, geothermal energy, nuclear energy and other resources, is expected to become the main pillar of power supply in the future. This paper studies that the main parameters of monocrystalline crystal silicon solar battery: the junction depth and superficial concentrations influence on electrical characteristics of monocrystalline silicon solar battery. The result shows that for maximum efficiency, it is bound to get the largest possible open circuit voltage, short circuit current and fill factor of the product, therefore, it is necessary to control these two parameters, the junction depth and doping parameters. If the junction depth is constant, with the increased superficial doping concentration of monocrystalline silicon solar battery, the photoelectric conversion efficiency of the battery increases slowly at first and then rapidly decreases, and the deeper the junction depth is, the more obvious trend of the photoelectric conversion efficiency is.


2012 ◽  
Vol 427 ◽  
pp. 128-132
Author(s):  
Zhan Kai Li ◽  
Jing Qin Wang ◽  
Fu Min Zhang ◽  
Xin Xia ◽  
Hao Hua Li ◽  
...  

With crystalline silicon solar battery industry is developing rapidly, there are scientific significance and application value for guiding the industrial production using analysis of the electrical properties of crystalline silicon solar battery. This paper studies that the main parameters of monocrystalline crystal silicon solar battery: the junction depth and superficial concentrations influence on electrical characteristics of monocrystalline silicon solar battery. The result shows that for maximum efficiency, it is bound to get the largest possible open circuit voltage, short circuit current and fill factor of the product, therefore, it is necessary to control the junction depth and doping parameters. If the junction depth is constant, with the increased superficial doping concentration of monocrystalline silicon solar battery, the photoelectric conversion efficiency of the battery increases slowly at first and then rapidly decreases, and the deeper the junction depth is, the more obvious trend of the photoelectric conversion efficiency is. If the superficial doping concentration is constant, the photoelectric conversion efficiency of the battery is increased with the reductive junction depth of surface of monocrystalline silicon solar battery.


Monocrystalline silicon based solar cells have the attributes that includes elemental semiconductor nature and balancing properties making it extensively applicable in the field of microelectronics. Silicon based solar cells make about 90% of today’s photovoltaic technology. The highest experimental efficiency reported for monocrystalline solar cells so far is 26.6%. The V-I characteristics of monocrystalline silicon based solar cells have been deliberated in the contextual of silicon as substrate material. The theoretical value of Shockely-Queisser (SQ) limit for monocrystalline solar cells is 30% that invocate further efficiency developments. The typical monocrystalline structure and recent advancements in monocrystalline solar cells are emphasized with appropriate examples to understand the photovoltaic phenomenon. Power conversion efficiency (PCE) enhancement is of prime importance in photovoltaic industry (PV) and hence different techniques analyze the question of PCE in context of cost effective solar cell production. In light of the literature, the texturizing, anti-reflecting coating and metallization are proposed as the efficient methods for reduction in losses and enhancement in efficiency.


Nanoscale ◽  
2019 ◽  
Vol 11 (45) ◽  
pp. 21824-21833 ◽  
Author(s):  
Jyoti V. Patil ◽  
Sawanta S. Mali ◽  
Chang Kook Hong

Controlling the grain size of the organic–inorganic perovskite thin films using thiourea additives now crossing 2 μm size with >20% power conversion efficiency.


Sign in / Sign up

Export Citation Format

Share Document