scholarly journals Effect of external resistance on microbial electrochemical desalination, sewage treatment, power and resource recovery

2022 ◽  
Vol 49 ◽  
pp. 101718
Author(s):  
Abdullah Al-Mamun
2017 ◽  
Vol 75 (7) ◽  
pp. 1659-1666 ◽  
Author(s):  
T. Bressani-Ribeiro ◽  
E. M. F. Brandt ◽  
K. G. Gutierrez ◽  
C. A. Díaz ◽  
G. B. Garcia ◽  
...  

This paper aims to present perspectives for energy (thermal and electric) and nutrient (N and S) recovery in domestic sewage treatment systems comprised of upflow anaerobic sludge blanket (UASB) reactors followed by sponge-bed trickling filters (SBTF) in developing countries. The resource recovery potential was characterized, taking into account 114 countries and a corresponding population of 968.9 million inhabitants living in the tropical world, which were grouped into three desired ranges in terms of cities’ size. For each of these clusters, a technological arrangement flow-sheet was proposed, depending on their technical and economic viability from our best experience. Considering the population living in cities over 100, 000 inhabitants, the potential of energy and nutrient recovery via the sewage treatment scheme would be sufficient to generate electricity for approximately 3.2 million residents, as well as thermal energy for drying purposes that could result in a 24% volume reduction of sludge to be transported and disposed of in landfills. The results show that UASB/SBTF systems can play a very important role in the sanitation and environmental sector towards more sustainable sewage treatment plants.


Author(s):  
I.S.A. Abeysiriwardana-Arachchige ◽  
H.M.K. Delanka-Pedige ◽  
S.P. Munasinghe-Arachchige ◽  
C.E. Brewer ◽  
N. Nirmalakhandan

2017 ◽  
Vol 4 ◽  
Author(s):  
Debra Shore

ABSTRACTThe development of Chicago and northeastern Illinois has been intimately tied to water, particularly Lake Michigan and the Chicago Area Waterways. The wastewater treatment plants of the past will become the power centers of the future by harnessing resources—including nutrients, energy, solids, and water itself—to bolster the economy and ensure regional sustainability.The story of Chicago’s development is inextricably linked to its relationship with the natural environment, beginning 16,000 years ago when the land was covered and compressed by an enormous glacier. Ever since, urban planners and policymakers have grappled with how to manage a city built on flat, swampy land, and what to do with the animal and human waste that accumulates in urban environments. During the 19th and 20th centuries, the solution was to move waste as far away from the area as possible. The Chicago River, which originally flowed into Lake Michigan, was converted into an open sewer and reversed, sending the flow—and all the wastes dumped into it—downstream. Over the 20th century, sewage treatment plants were constructed to minimize the potential for harm to humans and the environment. Now, however, our thinking is changing. Rather than discarding waste products, wastewater treatment plants are beginning to recover the resources that flow through them—including nutrients, energy, solids, and water—and transform them into assets that generate revenue and protect the environment. This potential for resource recovery means that the sewage treatment plants of the past will become the power centers of the future.


Author(s):  
Daisuke Tanikawa ◽  
Kenta Shimomura ◽  
Daisuke Motokawa ◽  
Yuya Itoiri ◽  
Zen-Ichiro Kimura

Abstract A combined system of an anaerobic baffled reactor (ABR), a down-flow hanging sponge (DHS) reactor, an aquarium tank (AT), and a constructed wetland (CWL) was proposed as a new concept for sewage treatment. The ABR and DHS reactor, AT, and CWL were applied for biological sewage treatment, bioassay, and nutrient removal with food production, respectively. Killifishes and tomatoes were cultivated in the AT and CWL, respectively. In the ABR, 81.3% of total chemical oxygen demand and 76.5% of total biochemical oxygen demand were removed at 5.1 h of the hydraulic retention time (HRT). Most remaining organic matter and 47.1% of ammonia were removed in the DHS reactor. In the CWL, 97.0% of total inorganic nitrogen and 78.6% of phosphate were removed with a 3.87 kg/m2 of tomatoes producing yield at 4.4 days of the HRT. In addition, anaerobic ammonium-oxidizing bacteria Candidatus Scalindua and ammonia-oxidizing bacteria Nitrospira and Nitorosococcus were considered as contributors to nitrogen removal in the CWL. The final effluent's water can be utilized as recycled water by installation of sand filtration and disinfection processes. Therefore, the proposed system can be applied as a low-energy, low-cost sewage treatment system with direct resource recovery.


Sign in / Sign up

Export Citation Format

Share Document