Numerical simulation of the effects of superhydrophobic coating in an oval cross-sectional solar collector with a wavy absorber filled with water-based Al2O3-ZnO-Fe3O4 ternary hybrid nanofluid

2022 ◽  
Vol 50 ◽  
pp. 101881
Author(s):  
Abolfazl Fattahi ◽  
Nader Karimi
Heat Transfer ◽  
2021 ◽  
Author(s):  
Anthonysamy John Christopher ◽  
Nanjundan Magesh ◽  
Ramanahalli Jayadevamurthy Punith Gowda ◽  
Rangaswamy Naveen Kumar ◽  
Ravikumar Shashikala Varun Kumar

2015 ◽  
Vol 357 (1) ◽  
pp. 30-37 ◽  
Author(s):  
Hemant Kumar Gupta ◽  
Ghanshyam Das Agrawal ◽  
Jyotirmay Mathur

Coatings ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1242
Author(s):  
Umair Khan ◽  
Aurang Zaib ◽  
Anuar Ishak ◽  
Fahad S. Al-Mubaddel ◽  
Sakhinah Abu Bakar ◽  
...  

The present study reveals the behavior of shear-thickening and shear-thinning fluids in magnetohydrodynamic flow comprising the significant impact of a hybrid nanofluid over a porous radially shrinking/stretching disc. The features of physical properties of water-based Ag/TiO2 hybrid nanofluid are examined. The leading flow problem is formulated initially in the requisite form of PDEs (partial differential equations) and then altered into a system of dimensionless ODEs (ordinary differential equations) by employing suitable variables. The renovated dimensionless ODEs are numerically resolved using the package of boundary value problem of fourth-order (bvp4c) available in the MATLAB software. The non-uniqueness of the results for the various pertaining parameters is discussed. There is a significant enhancement in the rate of heat transfer, approximately 13.2%, when the impact of suction governs about 10% in the boundary layer. Therefore, the heat transport rate and the thermal conductivity are greater for the new type of hybrid nanofluid compared with ordinary fluid. The bifurcation of the solutions takes place in the problem only for the shrinking case. Moreover, the sketches show that the nanoparticle volume fractions and the magnetic field delay the separation of the boundarylayer.


2012 ◽  
Vol 58 (5) ◽  
pp. 57-67 ◽  
Author(s):  
Hua QIU ◽  
Yoshiyuki IEMOTO ◽  
Shuichi TANOUE ◽  
Hideyuki UEMATSU

Sign in / Sign up

Export Citation Format

Share Document