Understanding quantum phenomena and quantum theories

Author(s):  
Armond Duwell
2016 ◽  
Vol 15 (03) ◽  
pp. 1602001
Author(s):  
X. Oriols

This paper is an introduction to the eleven works of the special issue on Quantum and Classical Frontiers of Noise. The weather, and its butterfly effect, is the typical example that explain why many natural phenomena are, in fact, not predictable with certainty. Noise in classical or quantum phenomena, understood as the difference between the empirical output of an experiment and its statistical prediction, is a measure of such uncertainty. One of the great contributions of noise appeared in 1905 when Einstein showed how the noisy (Brownian) motion of a dust particle seen in a microscope provided uncontroversial evidences on the existence of the (unseen) atoms. The aim of this special issue is to provoke discussions on how noise can help us to better understand (the reality behind) classical and quantum theories, and the frontier between them.


Entropy ◽  
2021 ◽  
Vol 23 (8) ◽  
pp. 1026
Author(s):  
Arkady Plotnitsky

This article considers a partly philosophical question: What are the ontological and epistemological reasons for using quantum-like models or theories (models and theories based on the mathematical formalism of quantum theory) vs. classical-like ones (based on the mathematics of classical physics), in considering human thinking and decision making? This question is only partly philosophical because it also concerns the scientific understanding of the phenomena considered by the theories that use mathematical models of either type, just as in physics itself, where this question also arises as a physical question. This is because this question is in effect: What are the physical reasons for using, even if not requiring, these types of theories in considering quantum phenomena, which these theories predict fully in accord with the experiment? This is clearly also a physical, rather than only philosophical, question and so is, accordingly, the question of whether one needs classical-like or quantum-like theories or both (just as in physics we use both classical and quantum theories) in considering human thinking in psychology and related fields, such as decision science. It comes as no surprise that many of these reasons are parallel to those that are responsible for the use of QM and QFT in the case of quantum phenomena. Still, the corresponding situations should be understood and justified in terms of the phenomena considered, phenomena defined by human thinking, because there are important differences between these phenomena and quantum phenomena, which this article aims to address. In order to do so, this article will first consider quantum phenomena and quantum theory, before turning to human thinking and decision making, in addressing which it will also discuss two recent quantum-like approaches to human thinking, that by M. G. D’Ariano and F. Faggin and that by A. Khrennikov. Both approaches are ontological in the sense of offering representations, different in character in each approach, of human thinking by the formalism of quantum theory. Whether such a representation, as opposed to only predicting the outcomes of relevant experiments, is possible either in quantum theory or in quantum-like theories of human thinking is one of the questions addressed in this article. The philosophical position adopted in it is that it may not be possible to make this assumption, which, however, is not the same as saying that it is impossible. I designate this view as the reality-without-realism, RWR, view and in considering strictly mental processes as the ideality-without-idealism, IWI, view, in the second case in part following, but also moving beyond, I. Kant’s philosophy.


2018 ◽  
Author(s):  
Roman Zubatyuk ◽  
Justin S. Smith ◽  
Jerzy Leszczynski ◽  
Olexandr Isayev

<p>Atomic and molecular properties could be evaluated from the fundamental Schrodinger’s equation and therefore represent different modalities of the same quantum phenomena. Here we present AIMNet, a modular and chemically inspired deep neural network potential. We used AIMNet with multitarget training to learn multiple modalities of the state of the atom in a molecular system. The resulting model shows on several benchmark datasets the state-of-the-art accuracy, comparable to the results of orders of magnitude more expensive DFT methods. It can simultaneously predict several atomic and molecular properties without an increase in computational cost. With AIMNet we show a new dimension of transferability: the ability to learn new targets utilizing multimodal information from previous training. The model can learn implicit solvation energy (like SMD) utilizing only a fraction of original training data, and archive MAD error of 1.1 kcal/mol compared to experimental solvation free energies in MNSol database.</p>


Author(s):  
Bruce L. Gordon

There is an argument for the existence of God from the incompleteness of nature that is vaguely present in Plantinga’s recent work. This argument, which rests on the metaphysical implications of quantum physics and the philosophical deficiency of necessitarian conceptions of physical law, deserves to be given a clear formulation. The goal is to demonstrate, via a suitably articulated principle of sufficient reason, that divine action in an occasionalist mode is needed (and hence God’s existence is required) to bring causal closure to nature and render it ontologically functional. The best explanation for quantum phenomena and the most adequate understanding of general providence turns out to rest on an ontic structural realism in physics that is grounded in the immaterialist metaphysics of theistic idealism.


Author(s):  
Alexey V. Kavokin ◽  
Jeremy J. Baumberg ◽  
Guillaume Malpuech ◽  
Fabrice P. Laussy

Microcavity polaritons have demonstrated their unique propensity to host macroscopic quantum phenomena. While they appear to be highly promising for applications in a classical realm, they are still far from competing even with decade old electronics. Another playground where polaritons could emerge as strong contenders is the microscopic quantum regime with single-particle effects and nonlinearities at the one-polariton level. Several theoretical proposals exist to explore polariton blockade mechanisms, realize sophisticated quantum phase transitions, implement quantum simulations and/or quantum information processing, thereby opening a new page of the polariton physics when such ideas will be implemented in the laboratory.


Author(s):  
Alexey V. Kavokin ◽  
Jeremy J. Baumberg ◽  
Guillaume Malpuech ◽  
Fabrice P. Laussy

This chapter presents experimental studies performed on planar semiconductor microcavities in the strong-coupling regime. The first section reviews linear experiments performed in the 1990s that evidence the linear optical properties of cavity exciton-polaritons. The chapter is then focused on experimental and theoretical studies of resonantly excited microcavity emission. We mainly describe experimental configuations in which stimulated scattering was observed due to formation of a dynamical condensate of polaritons. Pump-probe and cw experiments are described in addition. Dressing of the polariton dispersion and bistability of the polariton system due to inter-condensate interactions are discussed. The semiclassical and the quantum theories of these effects are presented and their results analysed. The potential for realization of devices is also discussed.


Sign in / Sign up

Export Citation Format

Share Document