Assessment of small fibers using evoked potentials

2014 ◽  
Vol 5 (2) ◽  
pp. 111-118 ◽  
Author(s):  
Caspar Skau Madsen ◽  
Nanna Brix Finnerup ◽  
Ulf Baumgärtner

AbstractBackground and purposeConventional neurophysiological techniques do not assess the function of nociceptive pathways and are inadequate to detect abnormalities in patients with small-fiber damage. This overview aims to give an update on the methods and techniques used to assess small fiber (Aδ- and C-fibers) function using evoked potentials in research and clinical settings.MethodsNoxious radiant or contact heat allows the recording of heat-evoked brain potentials commonly referred to as laser evoked potentials (LEPs) and contact heat-evoked potentials (CHEPs). Both methods reliably assess the loss of Aδ-fiber function by means of reduced amplitude and increased latency of late responses, whereas other methods have been developed to record ultra-late C-fiber-related potentials. Methodological considerations with the use of LEPs and CHEPs include fixed versus variable stimulation site, application pressure, and attentional factors. While the amplitude of LEPs and CHEPs often correlates with the reported intensity of the stimulation, these factors may also be dissociated. It is suggested that the magnitude of the response may be related to the saliency of the noxious stimulus (the ability of the stimulus to stand out from the background) rather than the pain perception.ResultsLEPs and CHEPs are increasingly used as objective laboratory tests to assess the pathways mediating thermal pain, but new methods have recently been developed to evaluate other small-fiber pathways. Pain-related electrically evoked potentials with a low-intensity electrical simulation have been proposed as an alternative method to selectively activate Aδ-nociceptors. A new technique using a flat tip mechanical stimulator has been shown to elicit brain potentials following activation of Type I A mechano-heat (AMH) fibers. These pinprick-evoked potentials (PEP) have a morphology resembling those of heat-evoked potentials following activation of Type II AMH fibers, but with a shorter latency. Cool-evoked potentials can be used for recording the non-nociceptive pathways for cooling. At present, the use of cool-evoked potentials is still in the experimental state. Contact thermodes designed to generate steep heat ramps may be programmed differently to generate cool ramps from a baseline of 35◦C down to 32◦C or 30◦C. Small-fiber evoked potentials are valuable tools for assessment of small-fiber function in sensory neuropathy, central nervous system lesion, and for the diagnosis of neuropathic pain. Recent studies suggest that both CHEPs and pinprick-evoked potentials may also be convenient tools to assess sensitization of the nociceptive system.ConclusionsIn future studies, small-fiber evoked potentials may also be used in studies that aim to understand pain mechanisms including different neuropathic pain phenotypes, such as cold- or touch-evoked allodynia, and to identify predictors of response to pharmacological pain treatment.ImplicationsFuture studies are needed for some of the newly developed methods.

2015 ◽  
Vol 114 (5) ◽  
pp. 2672-2681 ◽  
Author(s):  
Emanuel N. van den Broeke ◽  
André Mouraux ◽  
Antonia H. Groneberg ◽  
Doreen B. Pfau ◽  
Rolf-Detlef Treede ◽  
...  

Secondary hyperalgesia is believed to be a key feature of “central sensitization” and is characterized by enhanced pain to mechanical nociceptive stimuli. The aim of the present study was to characterize, using EEG, the effects of pinprick stimulation intensity on the magnitude of pinprick-elicited brain potentials [event-related potentials (ERPs)] before and after secondary hyperalgesia induced by intradermal capsaicin in humans. Pinprick-elicited ERPs and pinprick-evoked pain ratings were recorded in 19 healthy volunteers, with mechanical pinprick stimuli of varying intensities (0.25-mm probe applied with a force extending between 16 and 512 mN). The recordings were performed before (T0) and 30 min after (T1) intradermal capsaicin injection. The contralateral noninjected arm served as control. ERPs elicited by stimulation of untreated skin were characterized by 1) an early-latency negative-positive complex peaking between 120 and 250 ms after stimulus onset (N120-P240) and maximal at the vertex and 2) a long-lasting positive wave peaking 400–600 ms after stimulus onset and maximal more posterior (P500), which was correlated to perceived pinprick pain. After capsaicin injection, pinprick stimuli were perceived as more intense in the area of secondary hyperalgesia and this effect was stronger for lower compared with higher stimulus intensities. In addition, there was an enhancement of the P500 elicited by stimuli of intermediate intensity, which was significant for 64 mN. The other components of the ERPs were unaffected by capsaicin. Our results suggest that the increase in P500 magnitude after capsaicin is mediated by facilitated mechanical nociceptive pathways.


2020 ◽  
Vol 10 (11) ◽  
pp. 789
Author(s):  
Yang Rae Kim ◽  
Young-Min Park

Mismatch negativity (MMN) and loudness dependence of auditory evoked potentials (LDAEP), which are event-related potentials, have been investigated as biomarkers. MMN indicates the pre-attentive function, while LDAEP may be an index of central serotonergic activity. This study aimed to test whether MMN and LDAEP are useful biological markers for distinguishing patients with bipolar disorder (BD) and major depressive disorder (MDD), as well as the relationship between MMN and LDAEP. Fifty-five patients with major depressive episodes, aged 20 to 65 years, who had MDD (n = 17), BD type II (BIID) (n = 27), and BD type I (BID) (n = 11), were included based on medical records. Patients with MDD had a higher MMN amplitude than those with BID. In addition, the MMN amplitude in F4 positively correlated with the Korean version of mood disorder questionnaire scores (r = 0.37, p = 0.014), while the MMN amplitude in F3 correlated negatively with LDAEP (r = −0.30, p = 0.024). The odds ratios for the BID group and some variables were compared with those for the MDD group using multinomial logistic regression analysis. As a result, a significant reduction of MMN amplitude was found under BID diagnosis compared to MDD diagnosis (p = 0.015). This study supported the hypothesis that MMN amplitude differed according to MDD, BIID, and BID, and there was a relationship between MMN amplitude and LDAEP. These findings also suggested that BID patients had a reduced automatic and pre-attentive processing associated with serotonergic activity or N-methyl-D-aspartate receptor.


Diabetes Care ◽  
2010 ◽  
Vol 33 (12) ◽  
pp. 2654-2659 ◽  
Author(s):  
C.-C. Chao ◽  
M.-T. Tseng ◽  
Y.-J. Lin ◽  
W.-S. Yang ◽  
S.-C. Hsieh ◽  
...  

2015 ◽  
Vol 51 (5) ◽  
pp. 743-749 ◽  
Author(s):  
Vera Lagerburg ◽  
Mayienne Bakkers ◽  
Anne Bouwhuis ◽  
Janneke G.J. Hoeijmakers ◽  
Arjen M. Smit ◽  
...  

Neurology ◽  
2021 ◽  
pp. 10.1212/WNL.0000000000012643
Author(s):  
Paulina Simonne Scheuren ◽  
Gergely David ◽  
John Lawrence Kipling Kramer ◽  
Catherine Ruth Jutzeler ◽  
Markus Hupp ◽  
...  

Objective:To explore the so-called “structure-function paradox” in individuals with focal spinal lesions by means of tract-specific MRI coupled with multi-modal evoked potentials and quantitative sensory testing.Methods:Individuals with signs and symptoms attributable to cervical myelopathy (i.e., no evidence of competing neurological diagnosis) were recruited in the Balgrist University Hospital, Zurich, Switzerland between February 2018 and March 2019. We evaluated the relationship between the extent of structural damage within spinal nociceptive pathways (i.e., dorsal horn, spinothalamic tract, anterior commissure) assessed with atlas-based MRI , and 1) the functional integrity of spinal nociceptive pathways measured with contact heat-, cold-, and pinprick- evoked potentials and 2) clinical somatosensory phenotypes assessed with quantitative sensory testing.Results:Sixteen individuals (mean age 61 years) with either degenerative (N=13) or post-traumatic (N=3) cervical myelopathy participated in the study. Most individuals presented with mild myelopathy (modified Japanese Orthopaedic Association score (mJOA)>15; N=13). 71% of individuals presented with structural damage within spinal nociceptive pathways on MRI. Yet, 50% of these individuals presented with complete functional sparing (i.e., normal contact heat-, cold-, and pinprick- evoked potentials). The extent of structural damage within spinal nociceptive pathways was neither associated with functional integrity of thermal (heat: p=0.57; cold: p=0.49) and mechano-nociceptive pathways (p=0.83) nor with the clinical somatosensory phenotype (heat: p=0.16; cold: p=0.37; mechanical: p=0.73). The amount of structural damage to the spinothalamic tract did not correlate with spinothalamic conduction velocity (p>0.05; rho=-0.11).Conclusions:Our findings provide neurophysiological evidence to substantiate that structural damage in the spinal cord does not equate to functional somatosensory deficits. This study recognizes the pronounced structure-function paradox in cervical myelopathies and underlines the inevitable need for a multi-modal phenotyping approach to reveal the eloquence of lesions within somatosensory pathways.


2016 ◽  
pp. 674-690
Author(s):  
Paola Sandroni

The diagnosis of neuropathic pain is a challenge for physicians.The incompletely understood and complex mechanisms of neuropathic pain contribute to the difficulty. As pain is a subjective experience, there is no test that can assess it.. However various neurophysiological tests can assess the integrity, or lack of thereof, of the somatosensory pathways. Although some tests are used routinely (i.e., the quantitative sensory test and the autonomic testing), others have failed to reach widespread use in clinical practice, although they have provided very interesting data in the research field. This chapter reviews various neurophysiologic techniques used to study the function and dysfunction of the nociceptive system in humans, including quantitative sensory tests (QSTs), autonomic tests, microneurography (MCNG), laser evoked potentials (LEPs) and contact heat evoked potential stimulator (CHEPS).


Sign in / Sign up

Export Citation Format

Share Document