Polygraphic respiratory events during sleep in children treated with home continuous positive airway pressure: description and clinical consequences

2015 ◽  
Vol 16 (1) ◽  
pp. 107-112 ◽  
Author(s):  
Alessandro Amaddeo ◽  
Valeria Caldarelli ◽  
Marta Fernandez-Bolanos ◽  
Johan Moreau ◽  
Adriana Ramirez ◽  
...  
SLEEP ◽  
2020 ◽  
Author(s):  
Eline Oppersma ◽  
Wolfgang Ganglberger ◽  
Haoqi Sun ◽  
Robert J Thomas ◽  
M Brandon Westover

Abstract Study Objectives Sleep-disordered breathing is a significant risk factor for cardiometabolic and neurodegenerative diseases. High loop gain (HLG) is a driving mechanism of central sleep apnea or periodic breathing. This study presents a computational approach that identifies “expressed/manifest” HLG via a cyclical self-similarity feature in effort-based respiration signals. Methods Working under the assumption that HLG increases the risk of residual central respiratory events during continuous positive airway pressure (CPAP), the full night similarity, computed during diagnostic non-CPAP polysomnography (PSG), was used to predict residual central events during CPAP (REC), which we defined as central apnea index (CAI) higher than 10. Central apnea labels are obtained both from manual scoring by sleep technologists and from an automated algorithm developed for this study. The Massachusetts General Hospital sleep database was used, including 2466 PSG pairs of diagnostic and CPAP titration PSG recordings. Results Diagnostic CAI based on technologist labels predicted REC with an area under the curve (AUC) of 0.82 ± 0.03. Based on automatically generated labels, the combination of full night similarity and automatically generated CAI resulted in an AUC of 0.85 ± 0.02. A subanalysis was performed on a population with technologist-labeled diagnostic CAI higher than 5. Full night similarity predicted REC with an AUC of 0.57 ± 0.07 for manual and 0.65 ± 0.06 for automated labels. Conclusions The proposed self-similarity feature, as a surrogate estimate of expressed respiratory HLG and computed from easily accessible effort signals, can detect periodic breathing regardless of admixed obstructive features such as flow limitation and can aid the prediction of REC.


2014 ◽  
Vol 24 (2) ◽  
pp. 48-58 ◽  
Author(s):  
Lakshmi Kollara ◽  
Graham Schenck ◽  
Jamie Perry

Studies have investigated the applications of Continuous Positive Airway Pressure (CPAP) therapy in the treatment of hypernasality due to velopharyngeal dysfunction (VPD; Cahill et al., 2004; Kuehn, 1991; Kuehn, Moon, & Folkins, 1993; Kuehn et al., 2002). The purpose of this study was to examine the effectiveness of CPAP therapy to reduce hypernasality in a female subject, post-traumatic brain injury (TBI) and pharyngeal flap, who presented with signs of VPD including persistent hypernasality. Improvements in mean velopharyngeal orifice size, subjective perception of hypernasality, and overall intelligibility were observed from the baseline to 8-week post-treatment assessment intervals. Additional long-term assessments completed at 2, 3, and 4 months post-treatment indicated decreases in immediate post-treatment improvements. Results from the present study suggest that CPAP is a safe, non-invasive, and relatively conservative treatment method for reduction of hypernasality in selected patients with TBI. More stringent long-term follow up may indicate the need for repeated CPAP treatment to maintain results.


Sign in / Sign up

Export Citation Format

Share Document