Effect of dietary oil sources on fatty acid composition of ruminal digesta and populations of specific bacteria involved in hydrogenation of 18-carbon unsaturated fatty acid in finishing lambs

2016 ◽  
Vol 144 ◽  
pp. 126-134 ◽  
Author(s):  
Tianzhang Zhao ◽  
Yong Ma ◽  
Yanghua Qu ◽  
Hailing Luo ◽  
Kun Liu ◽  
...  
2014 ◽  
Vol 11 (3) ◽  
pp. 1107-1112
Author(s):  
Baghdad Science Journal

The fatty acid composition in the seed and flower of Ligustrun lucidum and olive oil was studied by Gas Chromatography. Results showed that the main components of seed oil were Palmitic (C16:0) 5,893% ,Palmitolic acid (C16:1)0,398%, Steaeic (C18:0)2,911% ,Oleic (C18:1)74,984%,Linoleic (C18:2) 12,959%,and Linolenic (C18:3) 0,997%. The proportion of unsaturated fatty acid was above 89,338%, so the seed oil of L. lucidum ait belonged to unsaturated oil which possessed promising application. The components of flower oil were Palmitic (C16:0) 65,674% ,Palmitolic acid (C16:1)6,516%, Steaeic (C18:0)2,641% ,Oleic (C18:1)14,707%,Linoleic (C18:2) 3,113%,and Linolenic (C18:3) 2,70%. The proportion of unsaturated fatty acid and saturated fatty acid was above 26,406%, 68,315%,respectively so the flower oil of ligustrun lucidum belonged to saturated oil . the main components of olive oil were Palmitic (C16:0) 13,364% ,Palmitolic acid (C16:1)0,834%, Steaeic (C18:0)3,860% ,Oleic (C18:1) 68,668%,Linoleic (C18:2) 12,586%,and Linolenic (C18:3) 0,687%. The proportion of unsaturated fatty acid was above 82,775%, so the olive oil of ligustrun lucidum ait belonged to. These values of seed oil are very similar to that found in the olive oil.


2019 ◽  
Vol 68 (8) ◽  
pp. 781-792 ◽  
Author(s):  
Ryota Hosomi ◽  
Kenji Fukunaga ◽  
Toshihiro Nagao ◽  
Shunichi Shiba ◽  
Kazumasa Miyauchi ◽  
...  

1983 ◽  
Vol 212 (3) ◽  
pp. 573-583 ◽  
Author(s):  
P J Neelands ◽  
M T Clandinin

Rats were fed diets that differed in fatty acid composition or in the proportion of energy derived from fat to determine if alteration of dietary fat intake influences the structural lipid composition of liver plasma membrane and the expression of an associated hormone-receptor-mediated function. Weanling rats were fed 9% (w/w) or 20% (w/w) low-erucic acid rape-seed oil or 9% (w/w) soya-bean oil for 24 days. Plasma membranes were isolated and the effect of diet fat on the fatty acid composition of phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidylinositol and sphingomyelin was determined. Diet fat significantly altered total saturated and (omega-9) and (omega-6)-unsaturated fatty acid composition in addition to the (omega-6)- to (omega-3)-unsaturated fatty acid ratio in these polar lipids. Feeding the high-fat diet increased the (omega-6)- to (omega-3)-unsaturated fatty acid ratio and the (omega-9)-unsaturated fatty acid content in all lipids except sphingomyelin. Assay of glucagon-stimulated adenylate cyclase activity at both high and low glucagon concentrations indicated that high-fat intake also decreased cyclic AMP formation. In a second experiment the fat intake was held constant (40% of energy) and oleic acid was substituted for linoleic acid by blending high- and low-linoleic acid-type safflower oils. This experiment established that a dose-response relationship exists between dietary intake of fatty acid and the fatty acid composition of plasma-membrane phospholipids. Specific diet-induced transitions in membrane phospholipid fatty acid composition were paralleled by changes in glucagon-stimulated adenylate cyclase activity. This study suggests that transitions in dietary fat intake can alter a hormone-receptor-mediated enzyme function in vivo by changing the surrounding lipid environment.


2019 ◽  
Vol 11 (10) ◽  
pp. 1430-1437
Author(s):  
Li Chen ◽  
Shengping Yang ◽  
Yunfang Qian ◽  
Jing Xie

Shewanella putrefaciensis a kind of spoilage bacteria in low temperature chilled aquatic products, which seriously threats human health and aquaculture. The fatty acid composition of S. putrefaciens cell membranes has been shown to be involved in adaption of bacteria to various environments. However, the specific fatty acid metabolism of S. putrefaciens to the low temperature environment remains unknown. In this study, the growth of S. putrefaciens, the response of fatty acid composition to low temperature production, and the differential expression and synthesis of enzymes related to unsaturated fatty acid synthesis were investigated by lack of fabA and desA in S. putrefaciens. Results showed that loss of fabA and desA suppressed the growth of S. putrefaciens and reduced unsaturated fatty acid contents at low temperature. In addition, the upregulation of fabA, but not desA resulted in accumulation of unsaturated fatty acid. Up-regulations of fabA and desA both resulted in promotion of GPR41 and Retn gene and protein expressions. These results demonstrated that the deletions of fabA and desA resulted in reduction of unsaturated fatty acid and key downstream genes of fatty acid metabolism, which suggested that unsaturated fatty acid was involved in the adaptations of fabA and desA-mediated S. putrefaciens to the low temperature environment. These results provided a tentative mechanism of the synthesis of unsaturated fatty acids in S. putrefaciens under low temperature conditions.


1996 ◽  
Vol 1996 ◽  
pp. 76-76
Author(s):  
R J Mansbridge ◽  
J S Blake

Medical authorities are increasingly recommending a reduction in the proportion of dietary energy derived from saturated fats (COMA). Milk processors are keen to identify new milk products for niche markets, and the production of 'healthier' milk may be required in the future. Dairy products are a major source of saturated fat in the diet and the work reported here examines the effect of feeding different sources of dietary oil on the fatty acid composition of bovine milk.In a 4 × 2 factorial experiment 96 Holstein cows were offered complete diets containing one of four oil sources, a calcium soap of palm fatty acid distillate(C), naked oats (O), pressure cooked whole soybeans (S) and partially oil extracted rapeseed (R), at two supplement to grass silage ratios (0.48:0.52 (low) or 0.70:0.30 (high)) in weeks 4 to 13 post calving.


Sign in / Sign up

Export Citation Format

Share Document