Extended effects of an aggressive spring-time anthelmintic treatment on Haemonchus contortus in sheep from a North America cold winter climate

2021 ◽  
pp. 106568
Author(s):  
Adam Sarah ◽  
Pratiksha Khanal ◽  
Larry D. Holler ◽  
Susan W. Holler ◽  
Michael B. Hildreth
2017 ◽  
Author(s):  
Thomas Opel ◽  
Sebastian Wetterich ◽  
Hanno Meyer ◽  
Alexander Yu. Dereviagin ◽  
Margret C. Fuchs ◽  
...  

Abstract. To reconstruct palaeoclimate and palaeonvironmental conditions in the Northeast Siberian Arctic, we studied late Quaternary permafrost deposits at the Oyogos Yar coast (Dmitry Laptev Strait). New infrared stimulated luminescence ages for distinctive floodplain deposits of the Kuchchugui Suite (112.5 ± 9.6 kyr) and thermokarst lake deposits of the Krest Yuryakh Suite (102.4 ± 9.7 kyr), respectively, provide new substantial geochronological data and shed light on the landscape history of the Dmitry Laptev Strait region during the Marine Isotope Stage (MIS) 5. Ground ice stable-isotope data are presented together with cryolithological information for eight cryostratigraphic units and are complemented by data from nearby Bol'shoy Lyakhovsky Island. Our combined record of ice-wedge stable isotopes as proxy for past winter climate conditions covers the last about 200 thousand years and is supplemented by texture-ice stable isotopes which contain annual climate conditions overprinted by freezing processes. Our ice wedge stable-water isotope data indicate substantial variations in Northeast Siberian Arctic winter climate conditions during the late Quaternary, in particular between Glacial and Interglacial but also over the last millennia to decades. Stable isotope values of Ice Complex ice wedges indicate cold to very cold winter temperatures about 200 kyr ago (MIS7), very cold winter conditions about 100 kyr ago (MIS5), very cold to moderate winter conditions between about 60 and 30 kyr ago, and extremely cold winter temperatures during the Last Glacial Maximum (MIS2). Much warmer winter conditions are reflected by extensive thermokarst development during the MIS5c and by Holocene ice-wedge stable-isotopes. Modern ice-wedge stable isotopes are most enriched and testify the recent winter warming in the Arctic. Hence, ice-wedge based reconstructions of changes in winter climate conditions add substantial information to those derived from paleoecological proxies stored in permafrost and allow for distinguishing between seasonal trends of past climate dynamics. Future progress in ice-wedge dating and an improved temporal resolution of ice-wedge derived climate information may help to fully explore the palaeoclimatic potential of ice wedges.


2009 ◽  
pp. 143-150
Author(s):  
Mauro Capocci

- Mauro Capocci discusses a recent book by Frank Snowden, who reconstructs the history of the struggle against malaria in Italy during the 20th century, and Eugenia Tognotti's study of that sickness in Sardinia. Until 1970 malaria was endemic in Italy, concentrated traditionally in river plains and along the coasts, but with a lower mortality in North Italy because of the cold winter climate and drainage of the marshland areas. The two studies are notable not only for the history of medicine and science, but because of the attention they pay to the social and political aspects of the struggle against malaria. Keywords: Italy, History, Medicine, Malaria. Parole chiave: Italia, Storia, Medicina, Malaria.


Energies ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 1042 ◽  
Author(s):  
Shimeng Hao ◽  
Changming Yu ◽  
Yuejia Xu ◽  
Yehao Song

Achieving comfort in hot summer and cold winter (HSCW) climate zones can be challenging, since the climate is characterized by high temperatures in the summer and relatively colder temperatures in the winter. Courtyards, along with other semi-open spaces such as verandas and overhangs, play an important role in mitigating outdoor climate fluctuations. In this research, the effects of courtyards on the thermal performance of vernacular houses in HSCW climate zones were studied via field measurements and computational fluid dynamics (CFD) models. The selected courtyard house was a representative vernacular timber dwelling situated in the southeast of Chongqing, China. The indoor and outdoor air temperature measurements revealed that the courtyard did play an active role as a climatic buffer and significantly reduced the temperature’s peak value in the summer, while during the winter, the courtyard prevented the surrounding rooms from receiving direct solar radiation, and thus to some extent acted as a heat barrier. The contributions of thermal mass are quite limited in this area, due to insufficient solar radiation in winter and general building operations. The natural ventilation mechanism of courtyard houses in HSCW zones was further studied through CFD simulations. The selected opened courtyard was compared to an enclosed structure with similar building configurations. The airflow patterns driven by wind and buoyancy effects were first simulated separately, and then together, to illustrate the ventilation mechanisms. The simulation results show that the courtyard’s natural ventilation behavior benefited from the proper openings on ground level.


2020 ◽  
pp. 174425912093672
Author(s):  
Haiyan Fu ◽  
Yewei Ding ◽  
Minmin Li ◽  
Yu Cao ◽  
Wenbo Xie ◽  
...  

In order to improve the comfort of the living environment, the thermal performance and temperature–humidity regulation of the exterior walls of two timber-framed structure buildings is theoretically calculated and experimentally studied in this study. Both of the two buildings are located in Nanjing, China, the hot-summer and cold-winter zone. Then WUFI is used to simulate and predict the changes of temperature, relative humidity, and water content of the two timber-framed structure buildings, to strengthen the theoretical analysis of the thermal and humidity coupling of the external walls, and to propose an optimal design scheme for the insulation and temperature and humidity regulation of the external walls. The main results show that the tested thermal conductivity is basically consistent with the predicted value, which prove that WUFI simulation can effectively predict the thermal insulation performance of the external wall. The two timber-framed structure buildings are both suitable for the cold areas, and the reasonable optimization of the design of the structure is the key to the insulation of the building wall. Timber-framed structure is proved to have good temperature–humidity regulation effect. The moisture content of the two timber-framed structure buildings is stable, and the annual temperature and winter humidity are within the appropriate humidity range, which indicates that the wall design is suitable for Nanjing hot-summer and cold-winter climate zone. Four types of wall structure indoor mold spore germinations are less likely, which is not easy to produce the mold. The above research aims to optimize the design of the energy-saving wall of the timber-framed structure and create a comfortable and healthy living environment.


2015 ◽  
Vol 28 (20) ◽  
pp. 8109-8117 ◽  
Author(s):  
Stephen Baxter ◽  
Sumant Nigam

Abstract The 2013/14 boreal winter (December 2013–February 2014) brought extended periods of anomalously cold weather to central and eastern North America. The authors show that a leading pattern of extratropical variability, whose sea level pressure footprint is the North Pacific Oscillation (NPO) and circulation footprint the West Pacific (WP) teleconnection—together, the NPO–WP—exhibited extreme and persistent amplitude in this winter. Reconstruction of the 850-hPa temperature, 200-hPa geopotential height, and precipitation reveals that the NPO–WP was the leading contributor to the winter climate anomaly over large swaths of North America. This analysis, furthermore, indicates that NPO–WP variability explains the most variance of monthly winter temperature over central-eastern North America since, at least, 1979. Analysis of the NPO–WP related thermal advection provides physical insight on the generation of the cold temperature anomalies over North America. Although NPO–WP’s origin and development remain to be elucidated, its concurrent links to tropical SSTs are tenuous. These findings suggest that notable winter climate anomalies in the Pacific–North American sector need not originate, directly, from the tropics. More broadly, the attribution of the severe 2013/14 winter to the flexing of an extratropical variability pattern is cautionary given the propensity to implicate the tropics, following several decades of focus on El Niño–Southern Oscillation and its regional and far-field impacts.


Sign in / Sign up

Export Citation Format

Share Document