scholarly journals Effect of pelleted alfalfa or native grass total mixed ration on the rumen bacterial community and growth performance of lambs on the Mongolian Plateau

2021 ◽  
pp. 106610
Author(s):  
Y.L. Zhou ◽  
L. Sun ◽  
Q.M. Cheng ◽  
Y.C. Li ◽  
J.X. Chen ◽  
...  
2021 ◽  
Vol 12 ◽  
Author(s):  
Sihan You ◽  
Shuai Du ◽  
Gentu Ge ◽  
Tao Wan ◽  
Yushan Jia

This study aimed to isolate and identify lactic acid bacteria (LAB) from the native grass and naturally fermented silage from the Mongolian Plateau. The effect of selected strains on bacterial community and quality of native grass silage was also studied. Strains XM2, 265, and 842 could grow normally at 15°C–30°C, pH 4.0–8.0, and NaCl 3 and 6.5%; they were identified as Lactiplantibacillus plantarum subsp. plantarum, Pediococcus acidilactici, and Latilactobacillus graminis, by sequencing 16S rRNA, respectively. The three strains (XM2, 265, and 842) and one commercial additive (L) were used as inoculants and singularly added to the native grass. Compared to the control, the dry matter content was significantly (p < 0.05) lower in L and XM2 groups. The water-soluble carbohydrate content was significantly (p < 0.05) higher in control than in other groups. Compared with the control, the crude protein and ammonia nitrogen contents were significantly (p < 0.05) higher and lower in the LAB-treated groups, and the acid and detergent fiber contents were significantly (p < 0.05) reduced in the L and XM2 groups than those in other groups. There was a significant (p < 0.05) difference in the pH value, lactic acid content, and lactic acid-to-acetic acid ratio in L and XM2 groups than in other groups. Compared with the control, the number of LAB was significantly (p < 0.05) higher in LAB-treated silages, whereas no significant (p > 0.05) differences were observed in yeast and aerobic bacteria in all groups. Compared to the control, the Shannon index was significantly (p < 0.05) reduced. Simpson and Chao1 were significantly (p < 0.05) increased. Principal coordinate analysis based on the unweighted UniFrac distance showed clear separation of the bacterial community in fresh materials and LAB-treated silages. Besides, compared to the control, the principal coordinate analysis of LAB-treated silages was also separate. After 30 days of fermentation, the relative abundance of Firmicutes increased and was the primary phylum in all silages. Compared with the control, the abundance of Firmicutes and Proteobacteriawas significantly (p < 0.05) higher and lower in L and XM2 groups. In contrast, no significant differences were observed among control, 265, and 842 groups. At the genus level, the relative abundance of Lactobacillus, Enterobacter, Pediococcus, and Weissella was increased and dominated the native grass fermentation. Compared with the control, the abundance of Lactobacillus was significantly (p < 0.05) higher in L, XM2, and 842 groups, while no significant (p > 0.05) differences were observed between the control and 265 groups. The abundance of Pediococcus was higher than that in other groups. Consequently, the results demonstrated that LAB significantly influenced silage fermentation by reconstructing microbiota, and Lactobacillus was the dominant genus in the native grass silages. Furthermore, the results showed that strain XM2 could effectively improve the silage quality, and it is considered a potential starter for the native grass silage.


Animals ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 1123 ◽  
Author(s):  
Haibo Wang ◽  
Hang Li ◽  
Fei Wu ◽  
Xinjun Qiu ◽  
Zhantao Yu ◽  
...  

The objective of this study was to evaluate the effects of dietary energy levels on growth performance, rumen fermentation and bacterial community, and meat quality of Holstein-Friesians bulls slaughtered at different ages. Thirty-six Holstein-Friesians bulls (17 months of age) were divided into a 3 × 3 factorial experiment with three energy levels (LE, ME and HE; metabolizable energy is 10.12, 10.90 and 11.68 MJ/kg, respectively) of diets, and three slaughter ages (20, 23 and 26 months). Results indicated that bulls fed with ME and HE diets had higher dry matter intake, average daily gain, and dressing percentage at 23 or 26 months of age. The ME and HE diets also reduced bacterial diversity, altered relative abundances of bacteria and produced lower concentrations of acetate, but higher butyrate and valerate concentrations in rumen fluid. Increasing in dietary energy and slaughter age increased the intramuscular fat (IMF) and water holding capacity. In summary, Holstein-Friesians bulls fed with ME and HE diets, slaughtered at 23 and 26 months of age could be a good choice to produce beef with high IMF. Slaughter age may have less influence than dietary energy in altering fermentation by increasing amylolytic bacteria and decreasing cellulolytic bacteria, and thus, further affecting meat quality.


2021 ◽  
Vol 12 ◽  
Author(s):  
Matteo Daghio ◽  
Francesca Ciucci ◽  
Arianna Buccioni ◽  
Alice Cappucci ◽  
Laura Casarosa ◽  
...  

The use of rustic cattle is desirable to face challenges brought on by climate change. Maremmana (MA) and Aubrac (AU) are rustic cattle breeds that can be successfully used for sustainable production. In this study, correlations between two rearing systems (feedlot and grazing) and the rumen microbiota, the lipid composition of rumen liquor (RL), and the growth performance of MA and AU steers were investigated. Bacterial community composition was characterized by high-throughput sequencing of 16S rRNA gene amplicons, and the RL lipid composition was determined by measuring fatty acid (FA) and the dimethyl acetal profiles. The main factor influencing bacterial community composition was the cattle breed. Some bacterial groups were positively correlated to average daily weight gain for the two breeds (i.e., Rikenellaceae RC9 gut group, Fibrobacter and Succiniclasticum in the rumen of MA steers, and Succinivibrionaceae UCG-002 in the rumen of AU steers); despite this, animal performance appeared to be influenced by short chain FAs production pathways and by the presence of H2 sinks that divert the H2 to processes alternative to the methanogenesis.


animal ◽  
2019 ◽  
Vol 13 (1) ◽  
pp. 53-63 ◽  
Author(s):  
S. Dabbou ◽  
I. Ferrocino ◽  
A. Kovitvadhi ◽  
S. Dabbou ◽  
S. Bergagna ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document