salinity condition
Recently Published Documents


TOTAL DOCUMENTS

68
(FIVE YEARS 33)

H-INDEX

6
(FIVE YEARS 4)

2022 ◽  
Author(s):  
Hai-Hong Huang ◽  
Chao-Yun Li ◽  
Yan-Ju Lei ◽  
Wei-Qi Kuang ◽  
Wan-Sheng Zou ◽  
...  

This study aimed to investigate the bacterial composition and inferring function profiles in the biofloc system rearing Litopenaeus vannamei postlarvae (PL) at a low salinity condition. PL (~ stage 15) were stocked in four parallel tanks filled in water with a salinity of 5.0‰ at a density of 4000 individuals per m3 for a 28-days culture experiment, during which glucose was added as carbon source with a C:N of 20:1. At the end of experiment, water was sampled from each tank and pooled to extract microbial DNA for high-throughput sequencing of V3-V4 region of 16S rRNA gene. Results showed that the bacterial community at 28 d was dominated by phyla of Proteobacteria (45.8%), Bacteroidetes (21.1%), Planctomycetes (13.5%), Chlamydiae (10.3%) and Firmicutes (6.8%). A proportion of 81% inferring KEGG functions of this bacterial community associated with metabolism. Among functions relating to nitrogen metabolism, 48.5% were involved in the conversion of ammonia to glutamate, but the proportion of those involved in transformation among ammonia, nitrite and nitrate was 18.0% in total, inferring higher protein-synthesis but lower inorganic nitrogen-transformation capacities of the bacterial community. At the same time (28 d), high levels of total nitrogen (231.3±6.0 mg L-1) and biofloc (127.0±63.0 mL L-1), but low concentrations of ammonia (0.04±0.01 mg L-1), nitrite (0.2±0.1 mg L-1) and nitrate (12.9±2.5 mg L-1) were observed. The results supply a novel insight for understanding the function of bacterial community in the biofloc system nursing L. vannamei PL at a low salinity.


2021 ◽  
Author(s):  
Hai-Hong Huang

This study aimed to investigate the effects of carbon to nitrogen ratio (C:N) on the water quality and shrimp growth performance during the grow-out culture of Litopenaeus vannamei in the biofloc system under a low salinity condition. Three biofloc treatments with an C:N (contained in the inputted feed and carbon source with the assumption that 75% of the feed nitrogen is excreted) of 8:1 (CN8), 16:1 (CN16) and 24:1 (CN24), respectively, were designed to stocking shrimp juveniles (≈ 0.8 g) at a density of 270 individuals m-3, for a 63-days culture experiment at a salinity of about 5‰. Results showed that in CN8 treatment, the levels of pH (6.9±0.1), carbonate alkalinity (104.0±2.8mg L-1 CaCO3), biofloc volume (4.8±0.9mL L-1) and TSS (327.4±24.4mg L-1) were significantly lower than those in the other two treatments (≥7.6±0.3, ≥157.6±21.6mg L-1 CaCO3, ≥24.1±3.7mL L-1 and ≥508.1±32.3mg L-1, P<0.05); whereas the levels of TAN (7.1±0.9mg L-1), nitrite (14.0±3.6mg L-1) and nitrate (77.0±5.0mg L-1) were significantly higher than those in the other treatments (≤2.0±0.6mg L-1, ≤4.9±3.1mg L-1 and ≤14.7±5.9mg L-1, P<0.05). The zootechnical parameters of shrimp were not significantly different between three treatments (P>0.05), except that the survival rates in CN16 treatment (96.8±2.0%) and CN24 treatment (93.7±4.2%) were significantly higher than that of CN8 treatment (81.5±6.4%, P<0.05). The results indicated that an inputted C:N higher than 16:1 was suitable for the biofloc system with a low salinity of 5‰, with an optimal inferred C:N range of 18.5-21.0:1 for water quality and growth performance.


2021 ◽  
Vol 53 (5) ◽  
pp. 210501
Author(s):  
Rani Kurnia ◽  
Deana Wahyuningrum ◽  
Doddy Abdassah ◽  
Taufan Marhaendrajana

Phase behavior tests in the surfactant screening process for EOR applications remain one of the relatively convenient ways to design an optimum surfactant formulation. However, phase behavior studies are unable to provide quantitative data for interfacial tension, which is one of the parameters that must be considered when selecting surfactants for EOR. Several studies related to the prediction of interfacial tension through phase behavior testing have been carried out. In this paper, the Huh correlation was used to estimate the interfacial tension value based on phase behavior tests. It was found that the current form of the Huh correlation may be applied for the below-to-optimum salinity condition. Furthermore, the constants of the equation vary depending on the surfactant type and mixtures.  


Geophysics ◽  
2021 ◽  
Vol 86 (6) ◽  
pp. B389-B400
Author(s):  
Hyun-Woo Joo ◽  
Tae-Hyuk Kwon ◽  
Seung-Rae Lee ◽  
Yuxin Wu

Complex electrical conductivity is increasingly used to monitor subsurface processes associated with microbial activities because microbial cells mostly have surface charges and thus electrical double layers. Although highly saline environments are frequently encountered in coastal and marine sediments, there are limited data available on the complex conductivity associated with microbial activities under a high-salinity condition. Therefore, we have developed the spectral responses of complex conductivity of sand associated with bacterial growth and biofilm formation under a highly saline condition of approximately 1% salinity and approximately 2 S/m pore water conductivity with an emphasis on relaxation behavior. A column test is performed, in which the model bacteria Shewanella oneidensis MR-1 are stimulated for cell growth and biofilm formation in a sand pack, whereas the complex conductivity is monitored from 0.01 Hz to 10 kHz. The test results indicate that the real conductivity increases in the early stage due to the microbial metabolites and the increased surface conduction with cell growth but soon begin to decrease because of the reduction of charge passages due to bioclogging. However, the imaginary conductivity significantly increases with time, and clear bell-shaped relaxation behaviors are observed with the peak frequency of 0.1–1 Hz, associated with the double-layer polarization of cells and electrically conductive pili and biofilms. The Cole-Cole relaxation model appears to capture such relaxation behaviors well, and the modeling results indicate gradual increases in normalized chargeability and decreases in relaxation time during bacterial growth and biofilm formation in the highly saline condition. Comparison with previous literature confirms that the high-salinity condition further increases the normalized chargeability, whereas it suppresses the phase shift and thus the imaginary conductivity. Our results suggest that the complex conductivity can effectively capture microbial biomass formation in sands under a highly saline condition.


Author(s):  
Siti Syuhaida Adnan ◽  
Jacqueline Isabella Anak Gisen
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document