Experimental validation of satellite micro-jitter management strategy in energy harvesting and vibration isolation

2016 ◽  
Vol 249 ◽  
pp. 172-185 ◽  
Author(s):  
Seong-Cheol Kwon ◽  
Hyun-Ung Oh
2017 ◽  
Vol 111 (25) ◽  
pp. 251903 ◽  
Author(s):  
Ying Li ◽  
Evan Baker ◽  
Timothy Reissman ◽  
Cheng Sun ◽  
Wing Kam Liu

Author(s):  
Davide Castagnetti

Energy harvesting from kinetic ambient energy requires converters able to efficiently operate in the low frequency range. A limit of the solutions proposed in the literature, both electromagnetic and piezoelectric, is their operating frequency, which generally ranges from about 50 to 300 Hz. To overcome these limitations, this work proposes an innovative energy harvester exploiting two counteracting Belleville springs. Thanks to the peculiar height to thickness ratio of the springs a highly compliant elastic system is obtained, which can be used either for electromagnetic or piezoelectric harvesting. The harvester is modelled analytically and numerically both with regard to the force-displacement and to the modal response. The experimental validation of the harvester, highlights a noticeable power output but at a higher eigenfrequency than expected.


2019 ◽  
Vol 30 (16) ◽  
pp. 2382-2395
Author(s):  
Uchenna Diala ◽  
SM Mahdi Mofidian ◽  
Zi-Qiang Lang ◽  
Hamzeh Bardaweel

This work investigates a vibration isolation energy harvesting system and studies its design to achieve an optimal performance. The system uses a combination of elastic and magnetic components to facilitate its dual functionality. A prototype of the vibration isolation energy harvesting device is fabricated and examined experimentally. A mathematical model is developed using first principle and analyzed using the output frequency response function method. Results from model analysis show an excellent agreement with experiment. Since any vibration isolation energy harvesting system is required to perform two functions simultaneously, optimization of the system is carried out to maximize energy conversion efficiency without jeopardizing the system’s vibration isolation performance. To the knowledge of the authors, this work is the first effort to tackle the issue of simultaneous vibration isolation energy harvesting using an analytical approach. Explicit analytical relationships describing the vibration isolation energy harvesting system transmissibility and energy conversion efficiency are developed. Results exhibit a maximum attainable energy conversion efficiency in the order of 1%. Results suggest that for low acceleration levels, lower damping values are favorable and yield higher conversion efficiencies and improved vibration isolation characteristics. At higher acceleration, there is a trade-off where lower damping values worsen vibration isolation but yield higher conversion efficiencies.


Author(s):  
Omid Mohareri ◽  
Siamak Arzanpour

The hydraulic engine mount (HEM) has been designed to provide a vibration isolation characteristic to control road and engine induced vibrations in vehicles by using two fluid passages known as decoupler and inertia track. These types of engine mounts are known for their best noise, vibration, and harshness (NVH) suppression performance among other different types of engine mounts. However, a low cost technique to recycle the dissipated energy of the system in the process of vibration suppression is significantly advantageous. A novel design structure in which the decoupler is replaced with a water turbine to capture and restore the vibration energy of the system is presented in this paper. The turbine design and selection has been done based on the upper and lower chamber pressures and the fluid flow rates in the system’s resonant frequency. The mount vibration isolation and energy generation performance is studied in both frequency and time domains. The simulation results demonstrate that a considerable amount of energy can be harvested from the engine vibration sources. This recent study demonstrates a novel energy harvesting technique in vehicles that require minimum design modifications of conventional hydraulic mounts.


Author(s):  
Davide Castagnetti

Energy harvesting from ambient vibrations exploiting piezoelectric materials is an efficient solution for the development of self-sustainable electronic nodes. This work presents a simple and innovative piezoelectric energy harvester, intrinsically including dynamic magnification and inspired by fractal geometry. After an initial design step, computational analysis and experimental validation show a very good frequency response with five eigenfrequencies below 100 Hz. Even if the piezoelectric transducers were put only on a symmetric half of the top surface of the structure, the energy conversion is good for all the eigenfrequencies investigated.


Sign in / Sign up

Export Citation Format

Share Document