Self-Sensory Carbon-based Textile Reinforced Concrete Beams – Characterization of the Structural-Electrical Response by AC measurements

2021 ◽  
pp. 113322
Author(s):  
Mahdi GABEN ◽  
Yiska GOLDFELD
2018 ◽  
Vol 11 (5) ◽  
pp. 997-1024
Author(s):  
T. E. T. BUTTIGNOL ◽  
J. F. FERNANDES ◽  
T. N. BITTENCOURT ◽  
J. L. A. O. SOUSA

Abstract This paper carries out a design analysis of reinforced concrete beams with steel fibers following the fib Model Code 2010 (MC 2010) procedures. The values obtained from the design calculations are compared with the experimental results of reinforced concrete beams with 20kg/m3 and 60 kg/m3 of steel fibers submitted to four-point bending tests. In the first part, the procedures for the classification and characterization of the material are explained. The experimental results of three-point bending tests performed on notched steel fiber reinforced concrete (FRC) beams following EN 14651 procedures are described. Moreover, the characterization of the FRC beams according to MC 2010, are carried out. In the second part, the flexural design of reinforced concrete beams with steel fibers, according to MC 2010, is carried out. A sectional analysis is performed in order to obtain the moment-curvature and the force-vertical displacement curves. The theoretical values are compared with the experimental results. Besides, a linear statistic analysis by means of the Rule of Mixture is carried out in order to analyze the variation of the flexural capacity of the reinforced beams with different amounts of steel fibers. The results demonstrated that the design rules described in the MC 2010 are on the safe side. The flexural resistance of concretes with different amounts of fiber incorporation can be determined by the Rule of Mixture, which has shown a high correlation factor (R2) with the experimental values.


2019 ◽  
Vol 14 ◽  
pp. 155892501984590 ◽  
Author(s):  
Shiping Yin ◽  
Yulin Yu ◽  
Mingwang Na

To study the reinforcement effect of textile-reinforced concrete (TRC) on concrete structures in a marine environment, a four-point bending loading method was used for graded loading to analyze the influence of the dry–wet cycle number, the reinforcement method, and chopped fiber addition on the flexural properties of load-holding reinforced concrete beams reinforced with textile-reinforced concrete. The results show that with the increase of dry–wet cycle numbers, the crack width and deflection of beams develop faster and the bearing capacity decreases. The performance of the prefabricated textile-reinforced concrete plate is close to that of a cast-in-place textile-reinforced concrete in limiting crack, bearing capacity, and deflection deformation. The addition of chopped fibers in fine-grained concrete can improve the reinforcement effect of textile-reinforced concrete. Based on the experimental results and referring to the relevant design codes and literature, the calculation formula of the bearing capacity of TRC-strengthened beam with a secondary load is established, and the calculated values are in good agreement with the actual values.


Structures ◽  
2021 ◽  
Vol 34 ◽  
pp. 4339-4349
Author(s):  
Cao Thanh Ngoc Tran ◽  
Xuan Huy Nguyen ◽  
Anh Tuan Le ◽  
Huy Cuong Nguyen ◽  
Dang Dung Le

Sign in / Sign up

Export Citation Format

Share Document