Effect of mechanical compliance of mounting clamp on electrical properties and vibration response of high-frequency piezoelectric ultrasonic transducer for microelectronic packaging and interconnection

2022 ◽  
pp. 113374
Author(s):  
Hongjie Zhang ◽  
Rongxin Gao ◽  
Hongjian Zhang ◽  
Chuanhao Wu
Author(s):  
P. Maréchal ◽  
L. Haumesser ◽  
G. Feuillard ◽  
L.P. Tran-Huu-Hue ◽  
J. Holc ◽  
...  

Author(s):  
Yuanyu Yu ◽  
Jiujiang Wang ◽  
Xin Liu ◽  
Sio Hang Pun ◽  
Weibao Qiu ◽  
...  

Background:: Ultrasound is widely used in the applications of underwater imaging. Capacitive micromachined ultrasonic transducer (CMUT) is a promising candidate to the traditional piezoelectric ultrasonic transducer. In underwater ultrasound imaging, better resolutions can be achieved with a higher frequency ultrasound. Therefore, a CMUT array for high-frequency ultrasound imaging is proposed in this work. Methods:: Analytical methods are used to calculate the center frequency in water and the pull-in voltage for determining the operating point of CMUT. Finite element method model was developed to finalize the design parameters. The CMUT array was fabricated with a five-mask sacrificial release process. Results:: The CMUT array owned an immersed center frequency of 2.6 MHz with a 6 dB fractional bandwidth of 123 %. The pull-in voltage of the CMUT array was 85 V. An underwater imaging experiment was carried out with the target of three steel wires. Conclusion:: In this study, we have developed CMUT for high-frequency underwater imaging. The experiment showed that the CMUT can detect the steel wires with the diameter of 100 μm and the axial resolution was 0.582 mm, which is close to one wavelength of ultrasound in 2.6 MHz.


2012 ◽  
Vol 108 (4) ◽  
pp. 987-991 ◽  
Author(s):  
Y. Chen ◽  
K. H. Lam ◽  
D. Zhou ◽  
W. F. Cheng ◽  
J. Y. Dai ◽  
...  

2009 ◽  
Vol 79-82 ◽  
pp. 1727-1730 ◽  
Author(s):  
Xiao Dong He ◽  
Xiang Hao Kong ◽  
Li Ping Shi ◽  
Ming Wei Li

ARMOR TPS panel is above the whole ARMOR TPS, and the metal honeycomb sandwich structure is the surface of the ARMOR TPS panel. So the metal honeycomb sandwich structure plays an important role in the ARMOR TPS, while it bears the flight dynamic pressure and stands against the flight dynamic calefaction. So the active environment of metal honeycomb sandwich structure is very formidable. We have to discuss any extreme situation, for reason of making sure aerial vehicle is safe. And high-frequency vibration is one of active environment. In this paper we have analyzed high-frequency vibration response of metal honeycomb sandwich structure. We processed high-frequency vibration experiment by simulating true aerial environment. Sequentially we operated high-frequency vibration experiment of metal honeycomb sandwich structure with cracks, notches and holes. Then finite-element analysis was performed by way of validating the experiment results. Haynes214 is a good high temperature alloy material of both face sheet and core at present, so we choose it in this paper.


Sign in / Sign up

Export Citation Format

Share Document