Monitoring acidic and basic volatile concentration using a pH-electrode based wireless passive sensor

2015 ◽  
Vol 209 ◽  
pp. 803-810 ◽  
Author(s):  
Sharmistha Bhadra ◽  
Douglas J. Thomson ◽  
Greg E. Bridges
Keyword(s):  
Author(s):  
K. Yang ◽  
M. Danino ◽  
Y. Bar-Shalom ◽  
D. Belfadel ◽  
B. Milgrom ◽  
...  

1985 ◽  
Vol 59 (5) ◽  
pp. 1660-1664
Author(s):  
S. A. Katz ◽  
A. C. Roth ◽  
E. O. Feigl

An electrode and cuvette system has been developed for the continuous and rapid measurement of either blood CO2 tension or pH. The CO2 electrode consists of a 1.5-mm-diameter flat-tip glass pH electrode covered by a film of carbonic anhydrase solution, over which a 25-micron-thick dimethyl silicone membrane is attached. Porous ceramic filled with 20% polyacrylamide, equilibrated with a salt solution, serves as a salt bridge between a Ag-AgCl reference electrode and the pH electrode surface. The electrode is housed in a four-port cuvette assembly. Blood from a vessel of interest is delivered to the cuvette by means of an occlusive roller pump. The cuvette maintains the electrode and blood at a constant temperature and directs a continuous jet of blood against the electrode surface. The cuvette also allows for easy and frequent calibration of the electrode with either gas or liquid standards. The 90% response time of the CO2 electrode is 3.0 s for liquids and 1.3 s for gases. Removal of the dimethyl silicone membrane and carbonic anhydrase film yields a pH electrode that can continuously measure blood pH with a 90% response time of 1.6 s.


2009 ◽  
Vol 47 (8) ◽  
pp. 92-99 ◽  
Author(s):  
O.B. Akan ◽  
M.T. Isik ◽  
B. Baykal

Author(s):  
Zijiao Tian ◽  
Kaipei Yang ◽  
Meir Danino ◽  
Yaakov Bar-Shalom ◽  
Benny Milgrom

2018 ◽  
Vol 10 (11) ◽  
pp. 1705 ◽  
Author(s):  
Biswajeet Pradhan ◽  
Hossein Rizeei ◽  
Abdinur Abdulle

This study aims to detect coastline changes using temporal synthetic aperture radar (SAR) images for the state of Kelantan, Malaysia. Two active images, namely, RADARSAT-1 captured in 2003 and RADARSAT-2 captured in 2014, were used to monitor such changes. We applied noise removal and edge detection filtering on RADARSAT images for preprocessing to remove salt and pepper distortion. Different segmentation analyses were also applied to the filtered images. Firstly, multiresolution segmentation, maximum spectral difference and chessboard segmentation were performed to separate land pixels from ocean ones. Next, the Taguchi method was used to optimise segmentation parameters. Subsequently, a support vector machine algorithm was applied on the optimised segments to classify shorelines with an accuracy of 98% for both temporal images. Results were validated using a thematic map from the Department of Survey and Mapping of Malaysia. The change detection showed an average difference in the shoreline of 12.5 m between 2003 and 2014. The methods developed in this study demonstrate the ability of active SAR sensors to map and detect shoreline changes, especially during low or high tides in tropical regions where passive sensor imagery is often masked by clouds.


2021 ◽  
Author(s):  
Chihiro Kikuchi ◽  
Hina Kurane ◽  
Takuma Watanabe ◽  
Makoto Demura ◽  
Takashi Kikukawa ◽  
...  

Abstract Ion channel proteins are physiologically important molecules in living organisms. Their molecular functions have been investigated using electrophysiological methods, which enable quantitative, precise and advanced measurements and thus require complex instruments and experienced operators. For simpler and easier measurements, we measured the anion transport activity of light-gated anion channelrhodopsins (ACRs) using a pH electrode method, which has already been established for ion pump rhodopsins. Using that method, we successfully measured the anion transport activity and its dependence on the wavelength of light, i.e. its action spectra, and on the anion species, i.e. its selectivity or preference, of several ACRs expressed in yeast cells. In addition, we identified the strong anion transport activity and the preference for NO3- of an ACR from a marine cryptophyte algae Proteomonas sulcata, named PsuACR_353. Such a preference was discovered for the first time in microbial pump- or channel-type rhodopsins. Nitrate is one of the most stable forms of nitrogen and is used as a nitrogen source by most organisms including plants. Therefore, PsuACR_353 may play a role in NO3- transport and might take part in NO3--related cellular functions in nature. Measurements of a mutant protein revealed that a Thr residue in the 3rd transmembrane helix, which corresponds to Cys102 in GtACR1, contributed to the preference for NO3-. These findings will be helpful to understand the mechanisms of anion transport, selectivity and preference of PsuACR_353.


Sign in / Sign up

Export Citation Format

Share Document