SOCRATES—A simple model for predicting long-term changes in soil organic carbon in terrestrial ecosystems

2006 ◽  
Vol 38 (5) ◽  
pp. 1172-1176 ◽  
Author(s):  
P GRACE ◽  
J LADD ◽  
G ROBERTSON ◽  
S GAGE
2003 ◽  
Vol 43 (4) ◽  
pp. 325 ◽  
Author(s):  
K. Y. Chan ◽  
D. P. Heenan ◽  
H. B. So

Light-textured soils (<35% clay) make up more than 80%, by area, of cropping soils in Australia. Many have inherent soil physical problems, e.g. hardsetting, sodicity and low organic carbon levels. Maintenance and improvement of soil organic carbon levels are crucial to preserving the soil structure and physical fertility of these soils.A review of field trials on conservation tillage (3–19 years duration) on these soils in southern Australia revealed that significantly higher soil organic carbon levels compared with conventional tillage were found only in the wetter areas (>500 mm) and the differences were restricted to the top 2.5–10.0 cm. The average magnitude of the difference was lower than that reported in the USA. The lack of a positive response to conservation tillage is probably a reflection of a number of factors, namely low crop yield (due to low rainfall), partial removal of stubble by grazing and the high decomposition rate (due to the high temperature). There is evidence suggesting that under continuous cropping in the drier areas, the soil organic carbon level continues to decline, even under conservation tillage.Better soil structure and soil physical properties, namely macro-porosity, aggregate stability and higher infiltration have been reported under conservation tillage when compared with conventional tillage. However, little information on long-term changes of these properties under conservation tillage is available. As many of these soil qualities are associated directly or indirectly with soil organic carbon levels, the lack of significant increase in the latter suggests that many of these improvements may not be sustainable in the longer term, particularly in the drier areas. Continuous monitoring of long-term changes in the soil organic carbon and soil quality under conservation tillage in different agro-ecological zones is needed.


2015 ◽  
Vol 79 (6) ◽  
pp. 1771-1781 ◽  
Author(s):  
Robert C. Schwartz ◽  
R. Louis Baumhardt ◽  
Bridget R. Scanlon ◽  
Jourdan M. Bell ◽  
Ronald G. Davis ◽  
...  

Agronomy ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1036
Author(s):  
Sauro Simoni ◽  
Giovanni Caruso ◽  
Nadia Vignozzi ◽  
Riccardo Gucci ◽  
Giuseppe Valboa ◽  
...  

Edaphic arthropod communities provide valuable information about the prevailing status of soil quality to improve the functionality and long-term sustainability of soil management. The study aimed at evaluating the effect of plant and grass cover on the functional biodiversity and soil characteristics in a mature olive orchard (Olea europaea L.) managed for ten years by two conservation soil managements: natural grass cover (NC) and conservation tillage (CT). The trees under CT grew and yielded more than those under NC during the period of increasing yields (years 4–7) but not when they reached full production. Soil management did not affect the tree root density. Collecting samples underneath the canopy (UC) and in the inter-row space (IR), the edaphic environment was characterized by soil structure, hydrological properties, the concentration and storage of soil organic carbon pools and the distribution of microarthropod communities. The soil organic carbon pools (total and humified) were negatively affected by minimum tillage in IR, but not UC, without a loss in fruit and oil yield. The assemblages of microarthropods benefited, firstly, from the grass cover, secondly, from the canopy effect, and thirdly, from a soil structure ensuring a high air capacity and water storage. Feeding functional groups—hemiedaphic macrosaprophages, polyphages and predators—resulted in selecting the ecotonal microenvironment between the surface and edaphic habitat.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Anne E. Harman-Ware ◽  
Samuel Sparks ◽  
Bennett Addison ◽  
Udaya C. Kalluri

AbstractSuberin is a hydrophobic biopolymer of significance in the production of biomass-derived materials and in biogeochemical cycling in terrestrial ecosystems. Here, we describe suberin structure and biosynthesis, and its importance in biological (i.e., plant bark and roots), ecological (soil organic carbon) and economic (biomass conversion to bioproducts) contexts. Furthermore, we highlight the genomics and analytical approaches currently available and explore opportunities for future technologies to study suberin in quantitative and/or high-throughput platforms in bioenergy crops. A greater understanding of suberin structure and production in lignocellulosic biomass can be leveraged to improve representation in life cycle analysis and techno-economic analysis models and enable performance improvements in plant biosystems as well as informed crop system management to achieve economic and environmental co-benefits.


Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 650
Author(s):  
Jesús Aguilera-Huertas ◽  
Beatriz Lozano-García ◽  
Manuel González-Rosado ◽  
Luis Parras-Alcántara

The short- and medium—long-term effects of management and hillside position on soil organic carbon (SOC) changes were studied in a centenary Mediterranean rainfed olive grove. One way to measure these changes is to analyze the soil quality, as it assesses soil degradation degree and attempts to identify management practices for sustainable soil use. In this context, the SOC stratification index (SR-COS) is one of the best indicators of soil quality to assess the degradation degree from SOC content without analyzing other soil properties. The SR-SOC was calculated in soil profiles (horizon-by-horizon) to identify the best soil management practices for sustainable use. The following time periods and soil management combinations were tested: (i) in the medium‒long-term (17 years) from conventional tillage (CT) to no-tillage (NT), (ii) in the short-term (2 years) from CT to no-tillage with cover crops (NT-CC), and (iii) the effect in the short-term (from CT to NT-CC) of different topographic positions along a hillside. The results indicate that the SR-SOC increased with depth for all management practices. The SR-SOC ranged from 1.21 to 1.73 in CT0, from 1.48 to 3.01 in CT1, from 1.15 to 2.48 in CT2, from 1.22 to 2.39 in NT-CC and from 0.98 to 4.16 in NT; therefore, the soil quality from the SR-SOC index was not directly linked to the increase or loss of SOC along the soil profile. This demonstrates the time-variability of SR-SOC and that NT improves soil quality in the long-term.


CATENA ◽  
2017 ◽  
Vol 151 ◽  
pp. 63-73 ◽  
Author(s):  
Samuel Bouchoms ◽  
Zhengang Wang ◽  
Veerle Vanacker ◽  
Sebastian Doetterl ◽  
Kristof Van Oost

Sign in / Sign up

Export Citation Format

Share Document