Long-term effects of four environment-related iron minerals on microbial anaerobic oxidation of methane in paddy soil: A previously overlooked role of widespread goethite

2021 ◽  
pp. 108387
Author(s):  
Zhanfei He ◽  
Yinghong Zhu ◽  
Jieni Feng ◽  
Qingqing Ji ◽  
Xin Chen ◽  
...  
2020 ◽  
Vol 141 ◽  
pp. 107685 ◽  
Author(s):  
Lichao Fan ◽  
Michaela A. Dippold ◽  
Tida Ge ◽  
Jinshui Wu ◽  
Volker Thiel ◽  
...  

2012 ◽  
Vol 9 (10) ◽  
pp. 3891-3899 ◽  
Author(s):  
A. Bannert ◽  
C. Bogen ◽  
J. Esperschütz ◽  
A. Koubová ◽  
F. Buegger ◽  
...  

Abstract. While the importance of anaerobic methane oxidation has been reported for marine ecosystems, the role of this process in soils is still questionable. Grasslands used as pastures for cattle overwintering show an increase in anaerobic soil micro-sites caused by animal treading and excrement deposition. Therefore, anaerobic potential methane oxidation activity of severely impacted soil from a cattle winter pasture was investigated in an incubation experiment under anaerobic conditions using 13C-labelled methane. We were able to detect a high microbial activity utilizing CH4 as nutrient source shown by the respiration of 13CO2. Measurements of possible terminal electron acceptors for anaerobic oxidation of methane were carried out. Soil sulfate concentrations were too low to explain the oxidation of the amount of methane added, but enough nitrate and iron(III) were detected. However, only nitrate was consumed during the experiment. 13C-PLFA analyses clearly showed the utilization of CH4 as nutrient source mainly by organisms harbouring 16:1ω7 PLFAs. These lipids were also found as most 13C-enriched fatty acids by Raghoebarsing et al. (2006) after addition of 13CH4 to an enrichment culture coupling denitrification of nitrate to anaerobic oxidation of methane. This might be an indication for anaerobic oxidation of methane by relatives of "Candidatus Methylomirabilis oxyfera" in the investigated grassland soil under the conditions of the incubation experiment.


2012 ◽  
Vol 9 (4) ◽  
pp. 4919-4945
Author(s):  
A. Bannert ◽  
C. Bogen ◽  
J. Esperschütz ◽  
A. Koubová ◽  
F. Buegger ◽  
...  

Abstract. While the importance of anaerobic methane oxidation has been reported for marine ecosystems, the role of this process in soils is still questionable. Grasslands used as pastures for cattle-overwintering show an increase in anaerobic soil micro-sites caused by animal treading and excrement deposition. Therefore anaerobic potential methane oxidation activity of severely impacted soil from a cattle winter pasture was investigated in an incubation experiment under anaerobic conditions using 13C-labeled methane. We were able to detect a high microbial activity utilizing CH4 as nutrient source shown by the respiration of 13CO2. Measurements of possible terminal electron acceptors for anaerobic oxidation of methane were carried out. Soil sulfate concentrations were too low to explain the oxidation of the amount of methane added, but enough nitrate and iron(III) were detected. However, only nitrate was consumed during the experiment. 13C-PLFA analyses clearly showed the utilization of CH4 as nutrient source mainly by organisms harbouring 16:1ω7 PLFAs. These lipids were found in Gram-negative microorganisms and anaerobes. The fact that these lipids are also typical for type I methanotrophs, known as aerobic methane oxidizers, might indicate a link between aerobic and anaerobic methane oxidation.


2021 ◽  
Vol 67 (No. 5) ◽  
pp. 264-269
Author(s):  
Yaohong Zhang ◽  
Fangyuan Wang

Quinones, redox-active functional groups in soil organic matter, can act as electron shuttles for microbial anaerobic transformation. Here, we used <sup>13</sup>CH<sub>4</sub> to trace <sup>13</sup>C conversion (<sup>13</sup>C-CO<sub>2</sub> + <sup>13</sup>C-SOC) to investigate the influence of an artificial electron shuttle (anthraquinone-2,6-disulfonate, AQDS) on denitrifying anaerobic methane oxidation (DAMO) in paddy soil. The results showed that AQDS could act as the terminal electron acceptor for the anaerobic oxidation of methane (AOM) in the paddy field. Moreover, AQDS significantly enhanced nitrate-dependent AOM rates and the amount of <sup>13</sup>C-CH<sub>4</sub> assimilation to soil organic carbon (SOC), whereas it was remarkably reduced nitrite-dependent AOM rates and <sup>13</sup>C assimilation. Ultimately, AQDS notably increased the total DAMO rates and <sup>13</sup>C assimilation to SOC. However, the electron shuttle did not change the percentage of <sup>13</sup>C-SOC in total <sup>13</sup>C-CH<sub>4</sub> conversion. These results suggest that electron shuttles in the natural organic matter might be able to offset methane emission by facilitating AOM coupled with the denitrification process.


2020 ◽  
Author(s):  
Hanni Vigderovich ◽  
Werner Eckert ◽  
Orit Sivan

&lt;p&gt;Methane is a potent greenhouse gas that is produced naturally via microbial processes in anoxic environments (i.e. marine and lake sediments). The release of methane to the atmosphere from sediments is controlled by its aerobic and anaerobic oxidation. Anaerobic oxidation of methane (AOM) consumes up to 90% of the produced methane in marine sediments and over half of the produced methane in freshwater sediments. The most common electron acceptor in marine sediments for AOM is sulfate, however, in freshwater lake sediments, where sulfate concentrations are low, other electron acceptors can take its place (i.e. iron/manganese/nitrate). In lake Kinneret (Israel), iron-coupled AOM was evident by in-situ sedimentary profiles and in fresh sediment slurry incubations. Here we present geochemical and molecular analyses results of slurry experiments of long-term incubated lake Kinneret sediments with labeled &lt;sup&gt;13&lt;/sup&gt;C-methane, different potential electron acceptors and a few inhibitors. These experiments are part of an ongoing research to characterize the AOM processes in lake sediments, and indicate another possible type of AOM that has evolved in the long-term incubated lake sediments.&lt;/p&gt;


2016 ◽  
Vol 381 ◽  
pp. 54-66 ◽  
Author(s):  
Melesio Quijada ◽  
Armelle Riboulleau ◽  
Pierre Faure ◽  
Raymond Michels ◽  
Nicolas Tribovillard

2021 ◽  
pp. 048661342097642
Author(s):  
Juan E. Santarcángelo ◽  
Juan Manuel Padín

Argentina’s right-wing shift in the 2015 presidential election concluded twelve years of center-left rule. The elected president, Mauricio Macri, claimed that the economy would experience normalization of existing imbalances and recover its strength in a “new political era.” However, the new administration quickly restored the dominance of neoliberal economic policies through a comprehensive set of initiatives, which centrally included the return to international financial debt and equity markets and submission to the International Monetary Fund’s (IMF) rules. This article analyzes Argentina’s external-debt-growth process and discusses its objectives and long-term effects. This paper posits that the indebtedness process carried out by the Macri administration—and its modality—not only increased the relevance of financial capital in the Argentine economy but also structurally conditioned any future nonorthodox alternative path of development. This outcome cannot be understood without taking into account the deliberate role of the United States, the IMF, and the top companies that operate in Argentina, as well as the complicity of many political sectors. JEL Classification: H63, F34, F63


Sign in / Sign up

Export Citation Format

Share Document