Anaerobic oxidation of methane in paddy soil: Role of electron acceptors and fertilization in mitigating CH4 fluxes

2020 ◽  
Vol 141 ◽  
pp. 107685 ◽  
Author(s):  
Lichao Fan ◽  
Michaela A. Dippold ◽  
Tida Ge ◽  
Jinshui Wu ◽  
Volker Thiel ◽  
...  
2019 ◽  
Author(s):  
Guangyi Su ◽  
Jakob Zopfi ◽  
Haoyi Yao ◽  
Lea Steinle ◽  
Helge Niemann ◽  
...  

AbstractAnaerobic oxidation of methane (AOM) by methanotrophic archaea is an important sink of this greenhouse gas in marine sediments. However, evidence for AOM in freshwater habitats is rare, and little is known about the pathways, electron acceptors and microbes involved. Here, we show that AOM occurs in anoxic sediments of a lake in southern Switzerland (Lake Cadagno). Combined AOM-rate and 16S rRNA gene-sequencing data suggest thatCandidatusMethanoperedens archaea are responsible for the observed methane oxidation. Members of the Methanoperedenaceae family were previously reported to conduct nitrate- or iron/manganese-dependent AOM. However, we demonstrate for the first time that the methanotrophic archaea do not necessarily rely upon these oxidants as terminal electron acceptors directly, but mainly perform canonical sulfate-dependent AOM, which under sulfate-starved conditions can be supported by metal (Mn, Fe) oxides through oxidation of reduced sulfur species to sulfate. The correspondence of high abundances of Desulfobulbaceae andCandidatusMethanoperedens at the same sediment depth confirm the interdependence of anaerobic methane-oxidizing archaea and sulfate-reducing bacteria. The relatively high abundance and widespread distribution ofCandidatusMethanoperedens in lake sediments highlight their potentially important role in mitigating methane emissions from terrestrial freshwater environments to the atmosphere, analogous to ANME-1, -2 and -3 in marine settings.


2012 ◽  
Vol 9 (10) ◽  
pp. 3891-3899 ◽  
Author(s):  
A. Bannert ◽  
C. Bogen ◽  
J. Esperschütz ◽  
A. Koubová ◽  
F. Buegger ◽  
...  

Abstract. While the importance of anaerobic methane oxidation has been reported for marine ecosystems, the role of this process in soils is still questionable. Grasslands used as pastures for cattle overwintering show an increase in anaerobic soil micro-sites caused by animal treading and excrement deposition. Therefore, anaerobic potential methane oxidation activity of severely impacted soil from a cattle winter pasture was investigated in an incubation experiment under anaerobic conditions using 13C-labelled methane. We were able to detect a high microbial activity utilizing CH4 as nutrient source shown by the respiration of 13CO2. Measurements of possible terminal electron acceptors for anaerobic oxidation of methane were carried out. Soil sulfate concentrations were too low to explain the oxidation of the amount of methane added, but enough nitrate and iron(III) were detected. However, only nitrate was consumed during the experiment. 13C-PLFA analyses clearly showed the utilization of CH4 as nutrient source mainly by organisms harbouring 16:1ω7 PLFAs. These lipids were also found as most 13C-enriched fatty acids by Raghoebarsing et al. (2006) after addition of 13CH4 to an enrichment culture coupling denitrification of nitrate to anaerobic oxidation of methane. This might be an indication for anaerobic oxidation of methane by relatives of "Candidatus Methylomirabilis oxyfera" in the investigated grassland soil under the conditions of the incubation experiment.


2011 ◽  
Vol 77 (13) ◽  
pp. 4429-4436 ◽  
Author(s):  
Jörg S. Deutzmann ◽  
Bernhard Schink

ABSTRACTAnaerobic oxidation of methane (AOM) with sulfate as terminal electron acceptor has been reported for various environments, including freshwater habitats, and also, nitrate and nitrite were recently shown to act as electron acceptors for methane oxidation in eutrophic freshwater habitats. Radiotracer experiments with sediment material of Lake Constance, an oligotrophic freshwater lake, were performed to follow14CO2formation from14CH4in sediment incubations in the presence of different electron acceptors, namely, nitrate, nitrite, sulfate, or oxygen. Whereas14CO2formation without and with sulfate addition was negligible, addition of nitrate increased14CO2formation significantly, suggesting that AOM could be coupled to denitrification. Nonetheless, denitrification-dependent AOM rates remained at least 1 order of magnitude lower than rates of aerobic methane oxidation. Using molecular techniques, putative denitrifying methanotrophs belonging to the NC10 phylum were detected on the basis of thepmoAand 16S rRNA gene sequences. These findings show that sulfate-dependent AOM was insignificant in Lake constant sediments. However, AOM can also be coupled to denitrification in this oligotrophic freshwater habitat, providing first indications that this might be a widespread process that plays an important role in mitigating methane emissions.


2012 ◽  
Vol 9 (4) ◽  
pp. 4919-4945
Author(s):  
A. Bannert ◽  
C. Bogen ◽  
J. Esperschütz ◽  
A. Koubová ◽  
F. Buegger ◽  
...  

Abstract. While the importance of anaerobic methane oxidation has been reported for marine ecosystems, the role of this process in soils is still questionable. Grasslands used as pastures for cattle-overwintering show an increase in anaerobic soil micro-sites caused by animal treading and excrement deposition. Therefore anaerobic potential methane oxidation activity of severely impacted soil from a cattle winter pasture was investigated in an incubation experiment under anaerobic conditions using 13C-labeled methane. We were able to detect a high microbial activity utilizing CH4 as nutrient source shown by the respiration of 13CO2. Measurements of possible terminal electron acceptors for anaerobic oxidation of methane were carried out. Soil sulfate concentrations were too low to explain the oxidation of the amount of methane added, but enough nitrate and iron(III) were detected. However, only nitrate was consumed during the experiment. 13C-PLFA analyses clearly showed the utilization of CH4 as nutrient source mainly by organisms harbouring 16:1ω7 PLFAs. These lipids were found in Gram-negative microorganisms and anaerobes. The fact that these lipids are also typical for type I methanotrophs, known as aerobic methane oxidizers, might indicate a link between aerobic and anaerobic methane oxidation.


2019 ◽  
Vol 164 ◽  
pp. 114935 ◽  
Author(s):  
Ya-Nan Bai ◽  
Xiu-Ning Wang ◽  
Jun Wu ◽  
Yong-Ze Lu ◽  
Liang Fu ◽  
...  

2021 ◽  
Vol 67 (No. 5) ◽  
pp. 264-269
Author(s):  
Yaohong Zhang ◽  
Fangyuan Wang

Quinones, redox-active functional groups in soil organic matter, can act as electron shuttles for microbial anaerobic transformation. Here, we used <sup>13</sup>CH<sub>4</sub> to trace <sup>13</sup>C conversion (<sup>13</sup>C-CO<sub>2</sub> + <sup>13</sup>C-SOC) to investigate the influence of an artificial electron shuttle (anthraquinone-2,6-disulfonate, AQDS) on denitrifying anaerobic methane oxidation (DAMO) in paddy soil. The results showed that AQDS could act as the terminal electron acceptor for the anaerobic oxidation of methane (AOM) in the paddy field. Moreover, AQDS significantly enhanced nitrate-dependent AOM rates and the amount of <sup>13</sup>C-CH<sub>4</sub> assimilation to soil organic carbon (SOC), whereas it was remarkably reduced nitrite-dependent AOM rates and <sup>13</sup>C assimilation. Ultimately, AQDS notably increased the total DAMO rates and <sup>13</sup>C assimilation to SOC. However, the electron shuttle did not change the percentage of <sup>13</sup>C-SOC in total <sup>13</sup>C-CH<sub>4</sub> conversion. These results suggest that electron shuttles in the natural organic matter might be able to offset methane emission by facilitating AOM coupled with the denitrification process.


Sign in / Sign up

Export Citation Format

Share Document